

CS 473: Artificial Intelligence

Bayes' Nets: Independence

Steve Tanimoto

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Recap: Bayes' Nets

- A Bayes' net is an efficient encoding of a probabilistic model of a domain
- Questions we can ask:

- Inference: given a fixed BN, what is P(X | e)?
- Representation: given a BN graph, what kinds of distributions can it encode?
- Modeling: what BN is most appropriate for a given domain?

Bayes' Nets

- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Conditional Independence

X and Y are independent if

 $\forall x, y \ P(x, y) = P(x)P(y) \dashrightarrow X \perp Y$

X and Y are conditionally independent given Z

 $\forall x, y, z \ P(x, y|z) = P(x|z)P(y|z) \dashrightarrow \to X \bot Y|Z$

- (Conditional) independence is a property of a distribution
- Example: $Alarm \perp Fire | Smoke|$

Bayes Nets: Assumptions

 Assumptions we are required to make to define the Bayes net when given the graph:

 $P(x_i|x_1\cdots x_{i-1}) = P(x_i|parents(X_i))$

- Beyond above "chain rule → Bayes net" conditional independence assumptions
 - Often additional conditional independences
 - They can be read off the graph
- Important for modeling: understand assumptions made when choosing a Bayes net graph

Independence in a BN

- Important question about a BN:
 - Are two nodes independent given certain evidence?
 - If yes, can prove using algebra (tedious in general)
 - If no, can prove with a counter example
 - Example:

- Question: are X and Z necessarily independent?
 - Answer: no. Example: low pressure causes rain, which causes traffic.
 - X can influence Z, Z can influence X (via Y)
 - Addendum: they could be independent: how?

D-separation: Outline

D-separation: Outline

- Study independence properties for triples
- Analyze complex cases in terms of member triples
- D-separation: a condition / algorithm for answering such queries

Causal Chains

This configuration is a "causal chain"

$$P(x, y, z) = P(x)P(y|x)P(z|y)$$

- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Low pressure causes rain causes traffic, high pressure causes no rain causes no traffic
 - In numbers:

Causal Chains

This configuration is a "causal chain"

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$
$$= \frac{P(x)P(y|x)P(z|y)}{P(x)P(y|x)}$$
$$= P(z|y)$$

Guaranteed X independent of Z given Y?

Yes!

Evidence along the chain "blocks" the influence

P(x, y, z) = P(x)P(y|x)P(z|y)

Common Cause

This configuration is a "common cause"

P(x, y, z) = P(y)P(x|y)P(z|y)

- Guaranteed X independent of Z ? No!
 - One example set of CPTs for which X is not independent of Z is sufficient to show this independence is not guaranteed.
 - Example:
 - Project due causes both forums busy and lab full
 - In numbers:

Common Cause

This configuration is a "common cause"

Guaranteed X and Z independent given Y?

$$P(z|x,y) = \frac{P(x,y,z)}{P(x,y)}$$
$$= \frac{P(y)P(x|y)P(z|y)}{P(x|y)P(z|y)}$$

$$\frac{P(y)P(x|y)}{P(y)P(x|y)}$$

$$= P(z|y)$$

Yes!

 Observing the cause blocks influence between effects.

Common Effect

 Last configuration: two causes of one effect (v-structures)

Are X and Y independent?

- Yes: the ballgame and the rain cause traffic, but they are not correlated
- Still need to prove they must be (try it!)
- Are X and Y independent given Z?
 - No: seeing traffic puts the rain and the ballgame in competition as explanation.
- This is backwards from the other cases
 - Observing an effect activates influence between possible causes.

The General Case

The General Case

- General question: in a given BN, are two variables independent (given evidence)?
- Solution: analyze the graph
- Any complex example can be broken into repetitions of the three canonical cases

Reachability

- Recipe: shade evidence nodes, look for paths in the resulting graph
- Attempt 1: if two nodes are connected by an undirected path not blocked by a shaded node, then they are not conditionally independent
- Almost works, but not quite
 - Where does it break?
 - Answer: the v-structure at T doesn't count as a link in a path unless "active"

Active / Inactive Paths

D-Separation

- Query: $X_i \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$?
- Check all (undirected!) paths between X_i and X_j
 - If one or more active, then independence not guaranteed

$$X_i \bowtie X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 Otherwise (i.e. if all paths are inactive), then independence is guaranteed

$$X_i \perp \perp X_j | \{X_{k_1}, \dots, X_{k_n}\}$$

Example

 $\begin{array}{ll} R \bot B & \text{Yes} \\ R \bot B | T & \\ R \bot B | T' & \end{array}$

Example

Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

 $T \perp\!\!\!\perp D$ $T \perp\!\!\!\perp D | R \qquad Yes$ $T \perp\!\!\!\perp D | R, S$

Structure Implications

 Given a Bayes net structure, can run dseparation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\!\perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

Computing All Independences

Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be
 encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

Bayes Nets Representation Summary

- Bayes nets compactly encode joint distributions
- Guaranteed independencies of distributions can be deduced from BN graph structure
- D-separation gives precise conditional independence guarantees from graph alone
- A Bayes' net's joint distribution may have further (conditional) independence that is not detectable until you inspect its specific distribution

Bayes' Nets

- Representation
- Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data