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CS 473: Artificial Intelligence

Bayes’ Nets: Independence

Steve Tanimoto
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]



Recap: Bayes’ Nets

 A Bayes’ net is an
efficient encoding
of a probabilistic
model of a domain

 Questions we can ask:

 Inference: given a fixed BN, what is P(X | e)?

 Representation: given a BN graph, what kinds of distributions can it encode?

 Modeling: what BN is most appropriate for a given domain?



Bayes’ Nets

 Representation

 Conditional Independences

 Probabilistic Inference

 Learning Bayes’ Nets from Data



Conditional Independence

 X and Y are independent if

 X and Y are conditionally independent given Z

 (Conditional) independence is a property of a distribution

 Example: 



Bayes Nets: Assumptions

 Assumptions we are required to make to define the 
Bayes net when given the graph:

 Beyond above “chain rule  Bayes net” conditional 
independence assumptions 

 Often additional conditional independences

 They can be read off the graph

 Important for modeling: understand assumptions made 
when choosing a Bayes net graph



Independence in a BN

 Important question about a BN:
 Are two nodes independent given certain evidence?
 If yes, can prove using algebra (tedious in general)
 If no, can prove with a counter example
 Example:

 Question: are X and Z necessarily independent?
 Answer: no.  Example: low pressure causes rain, which causes traffic.
 X can influence Z, Z can influence X (via Y)
 Addendum: they could be independent: how?

X Y Z



D-separation: Outline



D-separation: Outline

 Study independence properties for triples

 Analyze complex cases in terms of member triples

 D-separation: a condition / algorithm for answering such 
queries



Causal Chains

 This configuration is a “causal chain”

X: Low pressure          Y: Rain                          Z: Traffic

 Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Low pressure causes rain causes traffic,
high pressure causes no rain causes no 
traffic

 In numbers:

P( +y | +x ) = 1, P( -y | - x ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1



Causal Chains

 This configuration is a “causal chain”  Guaranteed X independent of Z given Y?

 Evidence along the chain “blocks” the 
influence

Yes!

X: Low pressure          Y: Rain                          Z: Traffic



Common Cause

 This configuration is a “common cause”  Guaranteed X independent of Z ?  No!

 One example set of CPTs for which X is not 
independent of Z is sufficient to show this 
independence is not guaranteed.

 Example:

 Project due causes both forums busy 
and lab full 

 In numbers:

P( +x | +y ) = 1, P( -x | -y ) = 1,
P( +z | +y ) = 1, P( -z | -y ) = 1

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Cause

 This configuration is a “common cause”  Guaranteed X and Z independent given Y?

 Observing the cause blocks influence 
between effects.

Yes!

Y: Project 
due

X: Forums 
busy Z: Lab full



Common Effect

 Last configuration: two causes of one 
effect (v-structures)

Z: Traffic

 Are X and Y independent?

 Yes: the ballgame and the rain cause traffic, but 
they are not correlated

 Still need to prove they must be (try it!)

 Are X and Y independent given Z?

 No: seeing traffic puts the rain and the ballgame in 
competition as explanation.

 This is backwards from the other cases

 Observing an effect activates influence between 

possible causes.

X: Raining Y: Ballgame



The General Case



The General Case

 General question: in a given BN, are two variables independent 
(given evidence)?

 Solution: analyze the graph

 Any complex example can be broken
into repetitions of the three canonical cases



Reachability

 Recipe: shade evidence nodes, look 
for paths in the resulting graph

 Attempt 1: if two nodes are connected 
by an undirected path not blocked by 
a shaded node, then they are not 
conditionally independent

 Almost works, but not quite
 Where does it break?
 Answer: the v-structure at T doesn’t count 

as a link in a path unless “active”

R

T

B

D

L



Active / Inactive Paths

 Question: Are X and Y conditionally independent given 
evidence variables {Z}?
 Yes, if X and Y “d-separated” by Z
 Consider all (undirected) paths from X to Y
 No active paths = independence!

 A path is active if each triple is active:
 Causal chain A  B  C where B is unobserved (either direction)
 Common cause A  B  C where B is unobserved
 Common effect (aka v-structure)

A  B  C where B or one of its descendents is observed

 All it takes to block a path is a single inactive segment

Active Triples Inactive Triples



 Query:

 Check all (undirected!) paths between        and 

 If one or more active, then independence not guaranteed

 Otherwise (i.e. if all paths are inactive),
then independence is guaranteed

D-Separation

?



Example
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Example

 Variables:
 R: Raining
 T: Traffic
 D: Roof drips
 S: I’m sad

 Questions:

T

S

D

R

Yes



Structure Implications

 Given a Bayes net structure, can run d-
separation algorithm to build a complete list of 
conditional independences that are necessarily 
true of the form

 This list determines the set of probability 
distributions that can be represented 



Computing All Independences
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Topology Limits Distributions

 Given some graph topology 
G, only certain joint 
distributions can be 
encoded

 The graph structure 
guarantees certain 
(conditional) independences

 (There might be more 
independence)

 Adding arcs increases the 
set of distributions, but has 
several costs

 Full conditioning can encode 
any distribution
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Bayes Nets Representation Summary

 Bayes nets compactly encode joint distributions

 Guaranteed independencies of distributions can be 
deduced from BN graph structure

 D-separation gives precise conditional independence 
guarantees from graph alone

 A Bayes’ net’s joint distribution may have further 
(conditional) independence that is not detectable until 
you inspect its specific distribution



Bayes’ Nets

 Representation

 Conditional Independences

 Probabilistic Inference
 Enumeration (exact, exponential complexity)
 Variable elimination (exact, worst-case

exponential complexity, often better)
 Probabilistic inference is NP-complete
 Sampling (approximate)

 Learning Bayes’ Nets from Data


