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CSE 473: Artificial Intelligence

Probability

Steve Tanimoto
University of Washington

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley.  All CS188 materials are available at http://ai.berkeley.edu.]

Topics from 30,000’

 We’re done with Part I Search and Planning!

 Part II: Probabilistic Reasoning
 Diagnosis
 Speech recognition
 Tracking objects
 Robot mapping
 Genetics
 Error correcting codes
 … lots more!

 Part III: Machine Learning

Outline

 Probability
 Random Variables
 Joint and Marginal Distributions
 Conditional Distribution
 Product Rule, Chain Rule, Bayes’ Rule
 Inference
 Independence

 You’ll need all this stuff A LOT for the 
next few weeks, so make sure you go 
over it now!

Uncertainty

 General situation:

 Observed variables (evidence): Agent knows certain 
things about the state of the world (e.g., sensor 
readings or symptoms)

 Unobserved variables: Agent needs to reason about 
other aspects (e.g. where an object is or what disease is 
present)

 Model: Agent knows something about how the known 
variables relate to the unknown variables

 Probabilistic reasoning gives us a framework for 
managing our beliefs and knowledge

What is….?

W P
sun 0.6
rain 0.1
fog 0.3

meteor 0.0

?

?

Random Variable

}

?Value

Probability 
Distribution

Joint Distributions

 A joint distribution over a set of random variables:
specifies a probability for each assignment (or outcome): 

 Must obey:

 Size of joint distribution if n variables with domain sizes d?

 For all but the smallest distributions, impractical to write out!

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3
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Probabilistic Models

 A probabilistic model is a joint distribution 
over a set of random variables

 Probabilistic models:
 (Random) variables with domains 
 Joint distributions: say whether assignments         

(called “outcomes”) are likely
 Normalized: sum to 1.0
 Ideally: only certain variables directly interact

 Constraint satisfaction problems:
 Variables with domains
 Constraints: state whether assignments are possible
 Ideally: only certain variables directly interact

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun T

hot rain F

cold sun F

cold rain T

Distribution over T,W

Constraint over T,W

Events

 An event is a set E of outcomes

 From a joint distribution, we can 
calculate the probability of any event

 Probability that it’s hot AND sunny?

 Probability that it’s hot?

 Probability that it’s hot OR sunny?

 Typically, the events we care about 
are partial assignments, like P(T=hot)

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

Quiz: Events

 P(+x, +y) ?

 P(+x) ?

 P(-y OR +x) ?

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

Marginal Distributions

 Marginal distributions are sub-tables which eliminate variables 
 Marginalization (summing out): Combine collapsed rows by adding

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4

Quiz: Marginal Distributions

X Y P

+x +y 0.2

+x -y 0.3

-x +y 0.4

-x -y 0.1

X P

+x

-x

Y P

+y

-y

Conditional Probabilities

 A simple relation between joint and marginal probabilities
 In fact, this is taken as the definition of a conditional probability

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

P(b)P(a)

P(a,b)
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Quiz: Conditional Probabilities

X Y P
+x +y 0.2
+x -y 0.3
-x +y 0.4
-x -y 0.1

 P(+x | +y) ?

 P(-x | +y) ?

 P(-y | +x) ?

Conditional Distributions

 Conditional distributions are probability distributions over some variables 
given fixed values of others

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.8

rain 0.2

W P

sun 0.4

rain 0.6

Conditional Distributions Joint Distribution

Conditional Distribs - The Slow Way…

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

W P

sun 0.4

rain 0.6

Probabilistic Inference

 Probabilistic inference = 
“compute a desired probability from other known 
probabilities (e.g. conditional from joint)”

 We generally compute conditional probabilities 
 P(on time | no reported accidents) = 0.90
 These represent the agent’s beliefs given the evidence

 Probabilities change with new evidence:
 P(on time | no accidents, 5 a.m.) = 0.95
 P(on time | no accidents, 5 a.m., raining) = 0.80
 Observing new evidence causes beliefs to be updated

Inference by Enumeration
 General case:

 Evidence variables: 
 Query* variable:
 Hidden variables: All variables

* Works fine with 
multiple query 
variables, too

 We want:

 Step 1: Select the 
entries consistent 
with the evidence

 Step 2: Sum out H to get joint 
of Query and evidence

 Step 3: Normalize

Inference by Enumeration

 P(W)?

 P(W | winter)?

 P(W | winter, hot)?

S T W P

summer hot sun 0.30

summer hot rain 0.05

summer cold sun 0.10

summer cold rain 0.05

winter hot sun 0.10

winter hot rain 0.05
winter cold sun 0.15

winter cold rain 0.20
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 Computational problems?

 Worst-case time complexity O(dn) 

 Space complexity O(dn) to store the joint distribution

Inference by Enumeration The Product Rule

 Sometimes have conditional distributions but want the joint

The Product Rule

 Example:

R P

sun 0.8

rain 0.2

D W P

wet sun 0.1

dry sun 0.9

wet rain 0.7

dry rain 0.3

D W P

wet sun 0.08

dry sun 0.72

wet rain 0.14

dry rain 0.06

The Chain Rule

 More generally, can always write any joint distribution as an 
incremental product of conditional distributions

Independence

 Two variables are independent in a joint distribution if:

 Says the joint distribution factors into a product of two simple ones
 Usually variables aren’t independent!

 Can use independence as a modeling assumption
 Independence can be a simplifying assumption
 Empirical  joint distributions: at best “close” to independent
 What could we assume for {Weather, Traffic, Cavity}?

 Independence is like something from CSPs: what?

Example: Independence?

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

hot sun 0.3

hot rain 0.2

cold sun 0.3

cold rain 0.2

T P

hot 0.5

cold 0.5

W P

sun 0.6

rain 0.4
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Example: Independence

 N fair, independent coin flips:

H 0.5

T 0.5

H 0.5

T 0.5

H 0.5

T 0.5

Conditional Independence

Conditional Independence

 P(Toothache, Cavity, Catch)

 If I have a cavity, the probability that the probe catches in it 
doesn't depend on whether I have a toothache:
 P(+catch | +toothache, +cavity) = P(+catch | +cavity)

 The same independence holds if I don’t have a cavity:
 P(+catch | +toothache, -cavity) = P(+catch| -cavity)

 Catch is conditionally independent of Toothache given Cavity:
 P(Catch | Toothache, Cavity) = P(Catch | Cavity)

 Equivalent statements:
 P(Toothache | Catch , Cavity) = P(Toothache | Cavity)
 P(Toothache, Catch | Cavity) = P(Toothache | Cavity) P(Catch | Cavity)
 One can be derived from the other easily

Conditional Independence

 Unconditional (absolute) independence very rare (why?)

 Conditional independence is our most basic and robust form 
of knowledge about uncertain environments.

 X is conditionally independent of Y given Z

if and only if:

or, equivalently, if and only if

Conditional Independence

 What about this domain:

 Traffic
 Umbrella
 Raining

Conditional Independence

 What about this domain:

 Fire
 Smoke
 Alarm
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Bayes Rule Pacman – Sonar (P4)

[Demo: Pacman – Sonar – No Beliefs(L14D1)]

Video of Demo Pacman – Sonar (no beliefs) Bayes’ Rule

 Two ways to factor a joint distribution over two variables:

 Dividing, we get:

 Why is this at all helpful?

 Lets us build one conditional from its reverse
 Often one conditional is tricky but the other one is simple
 Foundation of many systems we’ll see later (e.g. ASR, MT)

 In the running for most important AI equation!

That’s my rule!

Inference with Bayes’ Rule

 Example: Diagnostic probability from causal probability:

 Example:
 M: meningitis, S: stiff neck

 Note: posterior probability of meningitis still very small
 Note: you should still get stiff necks checked out!  Why?

Example
givens

=0.0079

Ghostbusters Sensor Model

36

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)

0.05 0.15 0.5 0.3

Real Distance = 3

Values of Pacman’s Sonar Readings
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Ghostbusters, Revisited

 Let’s say we have two distributions:
 Prior distribution over ghost location: P(G)

 Let’s say this is uniform
 Sensor reading model: P(R | G)

 Given: we know what our sensors do
 R = reading color measured at (1,1)
 E.g. P(R = yellow | G=(1,1)) = 0.1

 We can calculate the posterior distribution
P(G|r) over ghost locations given a reading 
using Bayes’ rule:

[Demo: Ghostbuster – with probability (L12D2) ]

Video of Demo Ghostbusters with Probability

Probability Recap
 Conditional probability

 Product rule

 Chain rule 

 Bayes rule

 X, Y independent if and only if:

 X and Y are conditionally independent given Z:                          
if and only if:


