

Topics from 30,000'

- We' re done with Part I Search and Planning!
- Part II: Probabilistic Reasoning
- Diagnosis
- Speech recognition
- Tracking objects
- Robot mapping
- Genetics
- Error correcting codes
- ... lots more!

- Part III: Machine Learning

Outline
- Probability
- Random Variables
- Joint and Marginal Distributions
- Conditional Distribution
- Product Rule, Chain Rule, Bayes' Rule
- Inference
- Independence
- You'll need all this stuff A LOT for the
next few weeks, so make sure you go
over it now!

Uncertainty	
- General situation:	
- Observed variables (evidence): : Agent knows certain	oiv ow or
things about the state of the world (e.g., sensor readings or symptoms)	-i.u
Unobserved variables: Agent needs to reason about other aspects (e.g. where an object is or what disease is present)	
Model: Agent knows something about how the known variables relate to the unknown variables	-0.0]
- Probabilistic reasoning gives us a framework for managing our beliefs and knowledge	

Joint Distributions			
- A joint distribution over a set of random variables: X_{1}, X_{2}, specifies a probability for each assignment (or outcome): $\begin{aligned} & P\left(X_{1}=x_{1}, X_{2}=x_{2}, \ldots X_{n}=x_{n}\right) \\ & P\left(x_{1}, x_{2}, \ldots x_{n}\right) \end{aligned}$ - Must obey: $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right) \geq 0$ $\sum_{\left(x_{1}, x_{2}, \ldots x_{n}\right)} P\left(x_{1}, x_{2}, \ldots x_{n}\right)=1$ - Size of joint distribution if n variables with domain sizes d ? - For all but the smallest distributions, impractical to write out!	hot hot cold cold	(T, W W sun rain sun rain) 0.4 0.1 0.2 0.3

Quiz: Events			
- $\mathrm{P}(+x,+y)$?	$P(X, Y)$		
	X	Y	P
- $\mathrm{P}(+\mathrm{x})$?	+x	+y	0.2
	${ }^{+x}$	-y	0.3
	-x	+ +	0.4
	-x	-y	0.1
- P(-y OR +x) ?			

Quiz: Conditional Probabilities			
			- $P(+x \mid+y)$?
$P(X, Y)$			
x	Y	P	- $\mathrm{P}(-\mathrm{x} \mid+\mathrm{y})$?
+x	+ +	0.2	
+x	-y	0.3	
-x	+y	0.4	
-x	-y	0.1	
			- P(-y \| $+x)$?

Probabilistic Inference

- Probabilistic inference =
"compute a desired probability from other known probabilities (e.g. conditional from joint)"
- We generally compute conditional probabilities
- P(on time | no reported accidents) $=0.90$
- These represent the agent's beliefs given the evidence
- Probabilities change with new evidence:
- P(on time | no accidents, 5 a.m.) $=0.95$
- P(on time | no accidents, 5 a.m., raining) $=0.80$

- Observing new evidence causes beliefs to be updated

Inference by Enumeration				
- P(W)?	S	T	W	P
	summer	hot	sun	0.30
	summer	hot	rain	0.05
- P(W \| winter)?	summer	cold	sun	0.10
	summer	cold	rain	0.05
	winter	hot	sun	0.10
	winter	hot	rain	0.05
	winter	cold	sun	0.15
- P(W \| winter, hot)?	winter	cold	rain	0.20

Inference by Enumeration
- Computational problems?
- Worst-case time complexity O(d ${ }^{\mathrm{n}}$)
- Space complexity O(dn) to store the joint distribution

The Product Rule
: Sometimes have conditional distributions but want the joint
$P(y) P(x \mid y)=P(x, y) \longleftrightarrow P(x \mid y)=\frac{P(x, y)}{P(y)}$

The Chain Rule
- More egenerally, can always write any joint distribution as an incremental product of conditional distributions $P\left(x_{1}, x_{2}, x_{3}\right)=P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) P\left(x_{3} \mid x_{1}, x_{2}\right)$ $P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$

Independence	
- Two variables are independent in a joint distribution if: $\begin{gather*} P(X, Y)=P(X) P(Y) \\ \forall x, y P(x, y)=P(x) P(y) \end{gather*}$ - Says the joint distribution factors into a product of two simple ones - Usually variables aren't independent! - Can use independence as a modeling assumption - Independence can be a simplifying assumption " Empirical joint distributions: at best "close" to independent - What could we assume for \{Weather, Traffic, Cavity\}? - Independence is like something from CSPs: what?	

Example: Independence?					
$P(T)$					
		${ }^{\top}$			
$P_{1}(T, W)$		hot	$P_{2}(T, W)=P(T) P(W)$		
		cold			
T	w		${ }^{\top}$	w	P
hot	sun 0.4		hot	sun	0.3
hot	rain 0.1		hot	rain	0.2
cold	sun 0.2	P(W)	cold	sun	0.3
cold rain 0.3		w	cold	rain	0.2
		rain			

Conditional Independence

- Unconditional (absolute) independence very rare (why?)

| Conditional Independence |
| :---: | :---: |
| - Unconditional (absolute) independence very rare (why?) |
| - Conditional independence is our most basic and robust form |
| of knowledge about uncertain environments. $\quad X \Perp Y \mid Z$ |
| - is conditionally independent of Y given z |
| if and only if: |
| $\quad \forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)$ |
| or, equivalently, f and only yf |
| $\forall x, y, z: P(x \mid z, y)=P(x \mid z)$ |

Probability Recap
- Conditional probability - Product rule $\begin{aligned} & P(x \mid y)=\frac{P(x, y)}{P(y)} \\ & P(x, y)=P(x \mid y) P(y) \end{aligned}$ - Chain rule $\begin{aligned} P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\ & =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \end{aligned}$ - Bayes rule $\quad P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)$ - X, Y independent if and only if: $\forall x, y: P(x, y)=P(x) P(y)$ - X and Y are conditionally independent given $\mathrm{Z}: \quad X \Perp Y \mid Z$ if and only if: $\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)$

