

Inference by Enumeration

- Computational problems?
 - Worst-case time complexity O(dⁿ)
 - Space complexity O(dⁿ) to store the joint distribution

Probability Recap	
• Conditional probability $P(x y) = \frac{P(x,y)}{P(y)}$	
• Product rule $P(x,y) = P(x y)P(y)$	
• Chain rule • Chain rule $P(X_1, X_2,, X_n) = P(X_1)P(X_2 X_1)P(X_3 X_1, X_2) \dots$ $= \prod_{i=1}^n P(X_i X_1,, X_{i-1})$ • Bayes rule $P(x y) = \frac{P(y x)}{P(y)}P(x)$	
• X, Y independent if and only if: $\forall x, y : P(x, y) = P(x)P(y)$ • X and Y are conditionally independent given Z: $X \perp \!\!\!\perp Y Z$ if and only if: $\forall x, y, z : P(x, y z) = P(x z)P(x z)$	(y z)