Reinforcement Learning II

Steve Tanimoto

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

- We still assume an MDP:
 - A set of states \(s \in S \)
 - A set of actions (per state) \(A \)
 - A model \(T(s,a,s') \)
 - A reward function \(R(s,a,s') \)
- Still looking for a policy \(\pi(s) \)
- New twist: don’t know \(T \) or \(R \), so must try out actions
- Big idea: Compute all averages over \(T \) using sample outcomes

The Story So Far: MDPs and RL

Known MDP: Offline Solution

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Value / policy iteration</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Based

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Value iteration, dynamic programming</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Policy evaluation</td>
</tr>
</tbody>
</table>

Unknown MDP: Model-Free

<table>
<thead>
<tr>
<th>Goal</th>
<th>Technique</th>
</tr>
</thead>
<tbody>
<tr>
<td>Compute (V^, Q^, \pi^*)</td>
<td>Q-learning</td>
</tr>
<tr>
<td>Evaluate a fixed policy (\pi)</td>
<td>Value learning</td>
</tr>
</tbody>
</table>

Model-Free Learning

- Model-free (temporal difference) learning
- Experience world through episodes
- Update estimates each transition \((s, a, r, s') \)
- Over time, updates will mimic Bellman updates

Q-Learning

- We’d like to do Q-value updates to each Q-state:
 \[Q(s, a) \leftarrow \sum T(s, a, s') \big[R(s, a, s') + \gamma \max_{a'} Q(s', a') \big] \]
- But can’t compute this update without knowing \(T, R \)
- Instead, compute average as we go
 - Instead, compute average as we go
 - Receive a sample transition \((s, a, s') \)
 - This sample suggests
 \[Q(s, a) \leftarrow r + \gamma \max_{a'} Q(s', a') \]
- But we want to average over results from \((s, a) \) [Why?]
- So keep a running average
 \[Q(s, a) \leftarrow (1 - \alpha) Q(s, a) + \alpha \big[r + \gamma \max_{a'} Q(s', a') \big] \]

Q-Learning Properties

- Amazing result: Q-learning converges to optimal policy – even if you’re acting suboptimally!
- This is called off-policy learning
- Caveats:
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions [!]
How to Explore?

Several schemes for forcing exploration

- Simplest: random actions (ε-greedy)
 - Every time step, flip a coin
 - With (small) probability ε, act randomly
 - With (large) probability 1-ε, act on current policy

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ε over time
 - Another solution: exploration functions

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- Exploration function
 - Takes a value estimate \(u \) and a visit count \(n \), and returns an optimistic utility, e.g. \(f(u, n) = u + k/n \)
 - Regular Q-Update: \(Q(s, a) \leftarrow Q(s, a) + \gamma \max_{a'} Q(s', a') \)
 - Modified Q-Update: \(Q(s, a) \leftarrow Q(s, a) + \gamma \max_{a'} [f(Q(s', a'), N(s', a'))] \)

 - Note: this propagates the "bonus" back to states that lead to unknown states as well!
Even if you learn the optimal policy, you still make mistakes along the way!

Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards.

Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal!

Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret.

Approximate Q-Learning

Basic Q-Learning keeps a table of all q-values.

In realistic situations, we cannot possibly learn about every single state!

Too many states to visit them all in training
Too many states to hold the q-tables in memory

Instead, we want to generalize:

Learn about some small number of training states from experience
Generalize that experience to new, similar situations
This is a fundamental idea in machine learning, and we’ll see it over and over again.

Example: Pacman

Let’s say we discover through experience that this state is bad:

In naive q-learning, we know nothing about this state:

Or even this one!

Video of Demo Q-Learning – Exploration Function – Crawler

Video of Demo Q-Learning Pacman – Tiny – Watch All
Feature-Based Representations

- Solution: describe a state using a vector of features (properties)
 - Features are functions from states to real numbers (often 0/1) that capture important properties of the state
 - Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 / (dist to dot)^2
 - Is Pacman in a tunnel? (0/1)
 - ... etc.
 - Can also describe a q-state (s, a) with features (e.g., action moves closer to food)

Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:
 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_m f_m(s) \]
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_m f_m(s, a) \]
- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

- Q-learning with linear Q-functions:
 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_m f_m(s, a) \]
- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features
- Formal justification: online least squares

Example: Q-Pacman

- Exact Q’s
- Approximate Q’s
- Intuitive interpretation: online least squares
Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression*

Optimization: Least Squares*

Minimizing Error*

Overfitting: Why Limiting Capacity Can Help*

Imagine we had only one point x, with features $f(x)$, target value y, and weights w:

$$ error(w) = \frac{1}{2} \left(y - \sum_{i} w_i f_i(x) \right)^2 $$

$$ \frac{\partial error(w)}{\partial w_i} = -\left(y - \sum_{i} w_i f_i(x) \right) f_i(x) $$

$$ w_{new} = w_{old} + \alpha \left(y - \sum_{i} w_i f_i(x) \right) f_i(x) $$

Approximate q update explained:

$$ w_{new} = w_{old} + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] f_a(s, a) $$

"target" "prediction"

$$ \text{total error} = \sum (y_i - \hat{y}_i)^2 = \sum \left(y_i - \sum w_i f_i(x_i) \right)^2 $$

Observation y

Prediction \hat{y}

Error or "residual"
Policy Search

- Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best
 - E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions.
 - Q-learning’s priority: get Q-values close (modeling)
 - Action selection priority: get ordering of Q-values right (prediction)
- Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights

Simplest policy search:
- Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than before

Problems:
- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Conclusion

- We’re done with Part I: Search and Planning!
- We’ve seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!