
1

Reinforcement Learning

Steve Tanimoto

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

Reinforcement Learning

 Basic idea:
 Receive feedback in the form of rewards
 Agent’s utility is defined by the reward function
 Must (learn to) act so as to maximize expected rewards
 All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

Active Reinforcement Learning

2

Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You choose the actions now
 Goal: learn the optimal policy / values

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning! You actually take actions in the world and

find out what happens…

Detour: Q-Value Iteration

 Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

 This is called off-policy learning

 Caveats:
 You have to explore enough
 You have to eventually make the learning rate

small enough
 … but not decrease it too quickly
 Basically, in the limit, it doesn’t matter how you select actions (!)

