Reinforcement Learning

- Basic idea:
 - Receive feedback in the form of rewards
 - Agent's utility is defined by the reward function
 - Must (learn to) act so as to maximize expected rewards
 - All learning is based on observed samples of outcomes!

Example: Learning to Walk

- Initial
- A Learning Trial
- After Learning (1K Trials)

Example: Toddler Robot

(Coehlo, Zhang and Saaraj, 2005)

Active Reinforcement Learning

(Videos: TODDLER – 40s)
Active Reinforcement Learning

- **Full** reinforcement learning: optimal policies (like value iteration)
 - You don’t know the transitions $T(s,a,s')$
 - You don’t know the rewards $R(s,a,s')$
 - You choose the actions now
 - **Goal:** learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Value Iteration

- **Value iteration:** find successive (depth-limited) values
 - Start with $V_0(s) = 0$, which we know is right
 - Given V_k, calculate the depth $k+1$ values for all states:
 $$V_{k+1}(s) \leftarrow \max_{a} \left(R(s,a,s') + \gamma V_k(s') \right)$$

- But Q-values are more useful, so compute them instead
 - **Start with $Q_0(s,a) = 0$**, which we know is right
 - Given Q_k, calculate the depth $k+1 q$-values for all q-states:
 $$Q_{k+1}(s,a) \leftarrow \sum_{a'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

- **Q-Learning:** sample-based Q-value iteration
 $$Q_{k+1}(s,a) = \sum_{a'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

- **Learn** $Q(s,a)$ values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: $Q(s,a)$
 - Consider your new sample estimate:
 $$\text{sample} = R(s,a,s') + \gamma \max_{a'} Q_k(s',a')$$
 - Incorporate the new estimate into a running average:
 $$Q(s,a) \leftarrow (1 - \alpha)Q(s,a) + \alpha \text{[sample]}$$

Video of Demo Q-Learning -- Crawler

- **Amazing result:** Q-learning converges to optimal policy -- even if you’re acting suboptimally!
 - **This is called off-policy learning**

- **Caveats:**
 - You have to explore enough
 - You have to eventually make the learning rate small enough
 - ... but not decrease it too quickly
 - Basically, in the limit, it doesn’t matter how you select actions!