
1

Reinforcement Learning

Steve Tanimoto

University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

Reinforcement Learning

 Basic idea:
 Receive feedback in the form of rewards
 Agent’s utility is defined by the reward function
 Must (learn to) act so as to maximize expected rewards
 All learning is based on observed samples of outcomes!

Environment

Agent

Actions: a
State: s

Reward: r

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER – 40s]

Active Reinforcement Learning

2

Active Reinforcement Learning

 Full reinforcement learning: optimal policies (like value iteration)
 You don’t know the transitions T(s,a,s’)
 You don’t know the rewards R(s,a,s’)
 You choose the actions now
 Goal: learn the optimal policy / values

 In this case:
 Learner makes choices!
 Fundamental tradeoff: exploration vs. exploitation
 This is NOT offline planning! You actually take actions in the world and

find out what happens…

Detour: Q-Value Iteration

 Value iteration: find successive (depth-limited) values
 Start with V0(s) = 0, which we know is right
 Given Vk, calculate the depth k+1 values for all states:

 But Q-values are more useful, so compute them instead
 Start with Q0(s,a) = 0, which we know is right
 Given Qk, calculate the depth k+1 q-values for all q-states:

Q-Learning

 Q-Learning: sample-based Q-value iteration

 Learn Q(s,a) values as you go
 Receive a sample (s,a,s’,r)
 Consider your old estimate:
 Consider your new sample estimate:

 Incorporate the new estimate into a running average:

[Demo: Q-learning – gridworld (L10D2)]
[Demo: Q-learning – crawler (L10D3)]

Video of Demo Q-Learning -- Gridworld

Video of Demo Q-Learning -- Crawler Q-Learning Properties

 Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

 This is called off-policy learning

 Caveats:
 You have to explore enough
 You have to eventually make the learning rate

small enough
 … but not decrease it too quickly
 Basically, in the limit, it doesn’t matter how you select actions (!)

