
CSE 473: Introduction to Artificial Intelligence
Markov Decision Processes II

Steve Tanimoto

Based on slides by: Dan Klein and Pieter Abbeel --- University of California, Berkeley
[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu

Solving MDPs

 Value Iteration
 Policy Iteration

 Reinforcement Learning

Policy Evaluation

Fixed Policies

Expectimax trees max over all actions to compute the optimal values

If we fixed some policy π (s), then the tree would be simpler – only one action per state
 … though the tree’s value would depend on which policy we fixed

a

s

s, a

s,a,s’
s’

π (s)

s

s, π(s)

s, π(s),s’
s’

Do the optimal action Do what π says to do

Utilities for a Fixed Policy

Another basic operation: compute the utility of a state s
under a fixed (generally non-optimal) policy

Define the utility of a state s, under a fixed policy π:
Vπ (s) = expected total discounted rewards starting in s and following π

Recursive relation (one-step look-ahead / Bellman equation):

π (s

s

s, π(s

s, π(s),s’
s

Example: Policy Evaluation

Always Go Right Always Go Forward

Example: Policy Evaluation

Always Go Right Always Go Forward

Policy Evaluation

How do we calculate the V’s for a fixed policy π?

Idea 1: Turn recursive Bellman equations into updates
(like value iteration)

Efficiency: O(S2) per iteration

Idea 2: Without the maxes, the Bellman equations are just a linear system
 Solve with Matlab (or your favorite linear system solver)

π

s, π

s, π(s),s’

Policy Iteration

Alternative approach for optimal values:
 Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal

utilities!) until convergence

 Step 2: Policy improvement: update policy using one-step look-ahead with resulting
converged (but not optimal!) utilities as future values

 Repeat steps until policy converges

This is policy iteration
 It’s still optimal! Can converge (much) faster under some conditions

Comparison

Both value iteration and policy iteration compute the same thing (all optimal values)

In value iteration:
 Every iteration updates both the values and (implicitly) the policy
 We don’t track the policy, but taking the max over actions implicitly recomputes it

In policy iteration:
 We do several passes that update utilities with fixed policy (each pass is fast because we

consider only one action, not all of them)
 After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 The new policy will be better (or we’re done)

Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

So you want to….
 Compute optimal values: use value iteration or policy iteration
 Compute values for a particular policy: use policy evaluation
 Turn your values into a policy: use policy extraction (one-step lookahead)

These all look the same!
 They basically are – they are all variations of Bellman updates
 They all use one-step lookahead expectimax fragments
 They differ only in whether we plug in a fixed policy or max over actions

Manipulator Control

Arm with two joints (workspace) Configuration space

Manipulator Control Path

Arm with two joints (workspace) Configuration space

Manipulator Control Path

Arm with two joints (workspace) Configuration space

Double Bandits

Double-Bandit MDP

Actions: Blue, Red
States: Win, Lose

W L

$1

1.0

$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

No discount
100 time steps

Both states have
the same value

Offline Planning

Solving MDPs is offline planning
 You determine all quantities through computation
 You need to know the details of the MDP
 You do not actually play the game!

Play Red

Play Blue

Value

No discount
100 time steps

Both states have
the same value

150

100

W L
$1

1.0

0.25 $0

0.75
$2

0.75 $2

0.25
$0

Let’s Play!

$2 $2 $0 $2 $2

$2 $2 $0 $0 $0

Online Planning

Rules changed! Red’s win chance is different.

W L

$1

1.0

$1

1.0

?? $0

??
$2

?? $2

??
$0

Let’s Play!

$0 $0 $0 $2 $0

$2 $0 $0 $0 $0

What Just Happened?

That wasn’t planning, it was learning!
 Specifically, reinforcement learning
 There was an MDP, but you couldn’t solve it with just computation
 You needed to actually act to figure it out

Important ideas in reinforcement learning that came up
 Exploration: you have to try unknown actions to get information
 Exploitation: eventually, you have to use what you know
 Regret: even if you learn intelligently, you make mistakes
 Sampling: because of chance, you have to try things repeatedly
 Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!

