CSE 473: Introduction to Artificial Intelligence

Markov Decision Processes II

Steve Tanimoto

Based on slides by: Dan Klein and Pieter Abbeel --- University of California, Berkele

slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkele

Solving MDPs

- Value Iteration
- Policy Iteration

Reinforcement Learning

Policy Evaluation

Fixed Policies

pectimax trees max over all actions to compute the optimal values

we fixed some policy π (s), then the tree would be simpler – only one action per s ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

nother basic operation: compute the utility of a state s nder a fixed (generally non-optimal) policy

efine the utility of a state s, under a fixed policy π :

/^{π} (s) = expected total discounted rewards starting in s and following π

ecursive relation (one-step look-ahead / Bellman equation):

$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

Example: Policy Evaluation

Always Go Right

Always Go Forward

Example: Policy Evaluation

Always Go Right

-10.00	100.00	-10.00
-10.00	1.09 🕨	-10.00
-10.00	-7.88 ▶	-10.00
-10.00	-8.69 ▶	-10.00

Always Go Forward

Policy Evaluation

ow do we calculate the V's for a fixed policy π ?

ea 1: Turn recursive Bellman equations into updates ke value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

ficiency: O(S²) per iteration

ea 2: Without the maxes, the Bellman equations are just a linear system Solve with Matlab (or your favorite linear system solver)

Policy Iteration

Iternative approach for optimal values:

Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

Step 2: Policy improvement: update policy using one-step look-ahead with result converged (but not optimal!) utilities as future values

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

Repeat steps until policy converges

his is policy iteration

It's still optimal! Can converge (much) faster under some conditions

Comparison

oth value iteration and policy iteration compute the same thing (all optimal value

value iteration:

- Every iteration updates both the values and (implicitly) the policy
- We don't track the policy, but taking the max over actions implicitly recomputes it

n policy iteration:

- We do several passes that update utilities with fixed policy (each pass is fast because w consider only one action, not all of them)
- After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
- The new policy will be better (or we're done)

oth are dynamic programs for solving MDPs

Summary: MDP Algorithms

o you want to....

- Compute optimal values: use value iteration or policy iteration
- Compute values for a particular policy: use policy evaluation
- Turn your values into a policy: use policy extraction (one-step lookahead)

hese all look the same!

- They basically are they are all variations of Bellman updates
- They all use one-step lookahead expectimax fragments
- They differ only in whether we plug in a fixed policy or max over actions

Manipulator Control

Arm with two joints (workspace)

Configuration space

Manipulator Control Path

Arm with two joints (workspace)

Configuration space

Manipulator Control Path

Configuration space

Double Bandits

Double-Bandit MDP

Offline Planning

olving MDPs is offline planning

- You determine all quantities through computation
- You need to know the details of the MDP
- You do not actually play the game!

No discoun 100 time ste Both states h the same val

Let's Play!

\$2\$2\$0\$2\$2\$0\$0\$0

Online Planning

ules changed! Red's win chance is different.

Let's Play!

\$0\$0\$0\$2\$0\$0\$0\$0\$0

What Just Happened?

hat wasn't planning, it was learning!

- Specifically, reinforcement learning
- There was an MDP, but you couldn't solve it with just computation
- You needed to actually act to figure it out

nportant ideas in reinforcement learning that came up

- Exploration: you have to try unknown actions to get information
- Exploitation: eventually, you have to use what you know
- Regret: even if you learn intelligently, you make mistakes
- Sampling: because of chance, you have to try things repeatedly
- Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!