# CSE 473: Artificial Intelligence

### **Markov Decision Processes**



**Steve Tanimoto** 

#### **University of Washington**

[Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

### Non-Deterministic Search



### Example: Grid World

- A maze-like problem
  - The agent lives in a grid
  - Walls block the agent's path
- Noisy movement: actions do not always go as planned
  - 80% of the time, the action North takes the agent North (if there is no wall there)
  - 10% of the time, North takes the agent West; 10% East
  - If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
  - Small "living" reward each step (can be negative)
  - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards



### **Grid World Actions**

#### Deterministic Grid World





- An MDP is defined by:
  - A set of states s in S
  - A set of actions a in A
  - A transition function T(s, a, s')
    - Probability that a from s leads to s', i.e., P(s'| s, a)
    - Also called the model or the dynamics

$$T(s_{11}, E, ...$$
  
 $T(s_{31}, N, s_{11}) = 0$   
...  
 $T(s_{31}, N, s_{32}) = 0.8$   
 $T(s_{31}, N, s_{21}) = 0.1$   
 $T(s_{31}, N, s_{41}) = 0.1$   
...



T is a Big Table! 11 X 4 x 11 = 484 entries

For now, we give this as input to the agent

- An MDP is defined by:
  - A set of states s in S
  - A set of actions a in A
  - A transition function T(s, a, s')
    - Probability that a from s leads to s', i.e., P(s' | s, a)
    - Also called the model or the dynamics
  - A reward function R(s, a, s')



# $R(s_{32}, N, s_{33}) = -0.01 \leftarrow$

$$R(s_{32}, N, s_{42}) = -1.01$$

$$R(s_{33}, E, s_{43}) = 0.99$$

#### **Cost of breathing**

R is also a Big Table!

For now, we also give this to the agent

- An MDP is defined by:
  - A set of states s in S
  - A set of actions a in A
  - A transition function T(s, a, s')
    - Probability that a from s leads to s', i.e., P(s'| s, a)
    - Also called the model or the dynamics
  - A reward function R(s, a, s')
    - Sometimes just R(s) or R(s')

$$R(s_{33}) = -0.01$$

$$R(s_{42}) = -1.01$$

$$R(s_{43}) = 0.99$$



- An MDP is defined by:
  - A set of states s in S
  - A set of actions a in A
  - A transition function T(s, a, s')
    - Probability that a from s leads to s', i.e., P(s'| s, a)
    - Also called the model or the dynamics
  - A reward function R(s, a, s')
    - Sometimes just R(s) or R(s')
  - A start state
  - Maybe a terminal state
- MDPs are non-deterministic search problems
  - One way to solve them is with expectimax search
  - We'll have a new tool soon



### What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent
- For Markov decision processes, "Markov" means action outcomes depend only on the current state

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \dots S_0 = s_0)$$

$$P(S_{t+1} = s' | S_t = s_t, A_t = a_t)$$

 This is just like search, where the successor function could only depend on the current state (not the history)



Andrey Markov (1856-1922)

### **Policies**

 In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal

• For MDPs, we want an optimal policy  $\pi^*: S \rightarrow A$ 

- A policy  $\pi$  gives an action for each state
- An optimal policy is one that maximizes expected utility if followed
- An explicit policy defines a reflex agent
- Expectimax didn't compute entire policies
  - It computed the action for a single state only



Optimal policy when R(s, a, s') = -0.03for all non-terminals s

# **Optimal Policies**



R(s) = -0.4







$$R(s) = -2.0$$

# Example: Racing



# Example: Racing

A robot car wants to travel far, quickly

Three states: Cool, Warm, Overheated

Two actions: *Slow, Fast* Going faster gets double reward



# Racing Search Tree



### **MDP Search Trees**

Each MDP state projects an expectimax-like search tree



# **Utilities of Sequences**



# **Utilities of Sequences**

What preferences should an agent have over reward sequences?

• More or less? [1, 2, 2] or [2, 3, 4]

• Now or later? [0, 0, 1] or [1, 0, 0]



### Discounting

- It's reasonable to maximize the sum of rewards
- It's also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially



# Discounting

#### How to discount?

 Each time we descend a level, we multiply in the discount once

#### Why discount?

- Sooner rewards probably do have higher utility than later rewards
- Also helps our algorithms converge

#### Example: discount of 0.5

- U([1,2,3]) = 1\*1 + 0.5\*2 + 0.25\*3
- U([1,2,3]) < U([3,2,1])</li>



# **Stationary Preferences**

Theorem: if we assume stationary preferences:

$$[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$$

$$\updownarrow$$

$$[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$$



- Then: there are only two ways to define utilities
  - Additive utility:  $U([r_0, r_1, r_2, ...]) = r_0 + r_1 + r_2 + \cdots$
  - Discounted utility:  $U([r_0, r_1, r_2, ...]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots$

# Quiz: Discounting

Given:



$$10*\gamma^3 = 1*\gamma$$

$$\gamma^2 = \frac{1}{10}$$

- Actions: East, West, and Exit (only available in exit states a, e)
- Transitions: deterministic
- Quiz 1: For  $\gamma = 1$ , what is the optimal policy?

| 10 |  |  |  | 1 |
|----|--|--|--|---|
|----|--|--|--|---|

• Quiz 2: For  $\gamma$  = 0.1, what is the optimal policy?



• Quiz 3: For which γ are West and East equally good when in state d?

### Infinite Utilities?!

- Problem: What if the game lasts forever? Do we get infinite rewards?
- Solutions:
  - Finite horizon: (similar to depth-limited search)
    - Terminate episodes after a fixed T steps (e.g. life)
    - Gives nonstationary policies (γ depends on time left)



$$U([r_0, \dots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \le R_{\text{max}}/(1-\gamma)$$

- Smaller y means smaller "horizon" shorter term focus
- Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)



## Recap: Defining MDPs

#### Markov decision processes:

- Set of states S
- Start state s<sub>0</sub>
- Set of actions A
- Transitions P(s'|s,a) (or T(s,a,s'))
- Rewards R(s,a,s') (and discount γ)



### MDP quantities so far:

- Policy = Choice of action for each state
- Utility = sum of (discounted) rewards

# Solving MDPs



Value Iteration

Policy Iteration

Reinforcement Learning

## **Optimal Quantities**

- The value (utility) of a state s:
  - V\*(s) = expected utility starting in s and acting optimally
- The value (utility) of a q-state (s,a):
  - Q\*(s,a) = expected utility starting out having taken action a from state s and (thereafter) acting optimally





# Snapshot of Demo – Gridworld V Values



Noise = 0.2 Discount = 0.9 Living reward = 0

### Snapshot of Demo – Gridworld Q Values



Noise = 0.2 Discount = 0.9 Living reward = 0

### Values of States

- Fundamental operation: compute the (expectimax) value of a state
  - Expected utility under optimal action
  - Average sum of (discounted) rewards
  - This is just what expectimax computed!
- Recursive definition of value:

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$



# Racing Search Tree



### Racing Search Tree

- We're doing way too much work with expectimax!
- Problem: States are repeated
  - Idea: Only compute needed quantities once
- Problem: Tree goes on forever
  - Idea: Do a depth-limited computation, but with increasing depths until change is small
  - Note: deep parts of the tree eventually don't matter if γ < 1</li>



### Time-Limited Values

- Key idea: time-limited values
- Define V<sub>k</sub>(s) to be the optimal value of s if the game ends in k more time steps
  - Equivalently, it's what a depth-k expectimax would give from s









### Computing Time-Limited Values



## Value Iteration



# The Bellman Equations



## The Bellman Equations

 Definition of "optimal utility" via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values

$$V^{*}(s) = \max_{a} Q^{*}(s, a)$$

$$Q^{*}(s, a) = \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$

$$V^{*}(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^{*}(s') \right]$$



 These are the Bellman equations, and they characterize optimal values in a way we'll use over and over

### Value Iteration

Bellman equations characterize the optimal values:

$$V^*(s) = \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V^*(s') \right]$$

Value iteration computes them:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$



lacktriangle ... though the  $V_k$  vectors are also interpretable as time-limited values



## Value Iteration Algorithm

- Start with  $V_0(s) = 0$ :
- Given vector of V<sub>k</sub>(s) values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$



- Complexity of each iteration: O(S<sup>2</sup>A)
- Number of iterations: poly(|S|, |A|, 1/(1-γ))
- Theorem: will converge to unique optimal values































# Convergence\*

- How do we know the V<sub>k</sub> vectors will converge?
- Case 1: If the tree has maximum depth M, then
   V<sub>M</sub> holds the actual untruncated values
- Case 2: If the discount is less than 1
  - Sketch: For any state V<sub>k</sub> and V<sub>k+1</sub> can be viewed as depth k+1 expectimax results in nearly identical search trees
  - The max difference happens if big reward at k+1 level
  - That last layer is at best all R<sub>MAX</sub>
  - But everything is discounted by  $\gamma^k$  that far out
  - So  $V_k$  and  $V_{k+1}$  are at most  $\gamma^k$  max |R| different
  - So as k increases, the values converge



# Computing Actions from Values

- Let's imagine we have the optimal values V\*(s)
- How should we act?
  - It's not obvious!
- We need to do a mini-expectimax (one step)



$$\pi^*(s) = \arg\max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

This is called policy extraction, since it gets the policy implied by the values

## Computing Actions from Q-Values

- Let's imagine we have the optimal q-values:
- How should we act?
  - Completely trivial to decide!

$$\pi^*(s) = \arg\max_{a} Q^*(s, a)$$



Important lesson: actions are easier to select from q-values than values!

#### Problems with Value Iteration

Value iteration repeats the Bellman updates:

$$V_{k+1}(s) \leftarrow \max_{a} \sum_{s'} T(s, a, s') \left[ R(s, a, s') + \gamma V_k(s') \right]$$



- Problem 1: It's slow O(S<sup>2</sup>A) per iteration
- Problem 2: The "max" at each state rarely changes
- Problem 3: The policy often converges long before the values

# VI → Asynchronous VI

- Is it essential to back up all states in each iteration?
  - No!
- States may be backed up
  - many times or not at all
  - in any order
- As long as no state gets starved...
  - convergence properties still hold!!







# Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors same?
- Prefer backing a state
  - whose successors had most change
- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing a state update priority queue
  - for all predecessors