CSE 473: Artificial Intelligence

Markov Decision Processes

Steve Tanimoto

University of Washington

[Slides originally created by Dan Klein & Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]
Non-Deterministic Search
Example: Grid World

- A maze-like problem
 - The agent lives in a grid
 - Walls block the agent’s path

- Noisy movement: actions do not always go as planned
 - 80% of the time, the action North takes the agent North (if there is no wall there)
 - 10% of the time, North takes the agent West; 10% East
 - If there is a wall in the direction the agent would have been taken, the agent stays put

- The agent receives rewards each time step
 - Small “living” reward each step (can be negative)
 - Big rewards come at the end (good or bad)

- Goal: maximize sum of rewards
Grid World Actions

Deterministic Grid World

Stochastic Grid World
Markov Decision Processes

- An MDP is defined by:
 - A set of states s in S
 - A set of actions a in A
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s'| s, a)$
 - Also called the model or the dynamics

\[
\begin{align*}
T(s_{11}, E, ...) \\
\vdots \\
T(s_{31}, N, s_{11}) &= 0 \\
\vdots \\
T(s_{31}, N, s_{32}) &= 0.8 \\
T(s_{31}, N, s_{21}) &= 0.1 \\
T(s_{31}, N, s_{41}) &= 0.1 \\
\vdots
\end{align*}
\]

T is a Big Table!
\[11 \times 4 \times 11 = 484 \text{ entries}\]

For now, we give this as input to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states s in S
 - A set of actions a in A
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$

\[
\begin{align*}
R(s_{32}, N, s_{33}) &= -0.01 \\
R(s_{32}, N, s_{42}) &= -1.01 \\
R(s_{33}, E, s_{43}) &= 0.99
\end{align*}
\]

- R is also a Big Table!
- For now, we also give this to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states s in S
 - A set of actions a in A
 - A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics
 - A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$

<table>
<thead>
<tr>
<th>State</th>
<th>Reward</th>
</tr>
</thead>
<tbody>
<tr>
<td>s_{33}</td>
<td>-0.01</td>
</tr>
<tr>
<td>s_{42}</td>
<td>-1.01</td>
</tr>
<tr>
<td>s_{43}</td>
<td>0.99</td>
</tr>
</tbody>
</table>
An MDP is defined by:

- A set of states s in S
- A set of actions a in A
- A transition function $T(s, a, s')$
 - Probability that a from s leads to s', i.e., $P(s'| s, a)$
 - Also called the model or the dynamics
- A reward function $R(s, a, s')$
 - Sometimes just $R(s)$ or $R(s')$
- A start state
- Maybe a terminal state

MDPs are non-deterministic search problems

- One way to solve them is with expectimax search
- We’ll have a new tool soon
What is Markov about MDPs?

- "Markov" generally means that given the present state, the future and the past are independent.

- For Markov decision processes, "Markov" means action outcomes depend only on the current state.

\[
P(S_{t+1} = s'|S_t = s_t, A_t = a_t, S_{t-1} = s_{t-1}, A_{t-1}, \ldots, S_0 = s_0)
\]

\[
= P(S_{t+1} = s'|S_t = s_t, A_t = a_t)
\]

- This is just like search, where the successor function could only depend on the current state (not the history).
Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal.

- For MDPs, we want an optimal policy $\pi^*: S \rightarrow A$
 - A policy π gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent

- Expectimax didn’t compute entire policies
 - It computed the action for a single state only

Optimal policy when $R(s, a, s') = -0.03$ for all non-terminals s
Optimal Policies

R(s) = -2.0

R(s) = -0.4

R(s) = -0.03

R(s) = -0.01

Cost of breathing

R(s) = -0.4

R(s) = -0.03

R(s) = -2.0
Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward
Racing Search Tree
MDP Search Trees

- Each MDP state projects an expectimax-like search tree

\[T(s,a,s') = P(s' | s,a) \]

\[R(s,a,s') \]

\(s \) is a state

\((s,a,s') \) called a transition
Utilities of Sequences
Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? \[1, 2, 2\] or \[2, 3, 4\]
- Now or later? \[0, 0, 1\] or \[1, 0, 0\]
Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

\[1 \quad \gamma \quad \gamma^2 \]

Worth Now \quad Worth Next Step \quad Worth In Two Steps
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once

- **Why discount?**
 - Sooner rewards probably do have higher utility than later rewards
 - Also helps our algorithms converge

- **Example: discount of 0.5**
 - $U([1,2,3]) = 1\times 1 + 0.5\times 2 + 0.25\times 3$
 - $U([1,2,3]) < U([3,2,1])$
Stationary Preferences

- **Theorem:** if we assume stationary preferences:

 \[[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots] \]

 ⇔

 \[[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots] \]

- Then: there are only two ways to define utilities

 - **Additive utility:** \(U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots \)

 - **Discounted utility:** \(U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 \cdots \)
Quiz: Discounting

- Given:
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic

- Quiz 1: For $\gamma = 1$, what is the optimal policy?
 - $10 * \gamma^3 = 1 * \gamma$
 - $\gamma^2 = \frac{1}{10}$

- Quiz 2: For $\gamma = 0.1$, what is the optimal policy?

- Quiz 3: For which γ are West and East equally good when in state d?
Infinite Utilities?!

- **Problem:** What if the game lasts forever? Do we get infinite rewards?

- **Solutions:**
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g. life)
 - Gives nonstationary policies (γ depends on time left)
 - Discounting: use $0 < \gamma < 1$

 $$U([r_0, \ldots r_\infty]) = \sum_{t=0}^{\infty} \gamma^t r_t \leq R_{\max}/(1 - \gamma)$$

 - Smaller γ means smaller “horizon” – shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like “overheated” for racing)
Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P(s' | s,a)$ (or $T(s,a,s')$)
 - Rewards $R(s,a,s')$ (and discount γ)

- **MDP quantities so far:**
 - Policy = Choice of action for each state
 - Utility = sum of (discounted) rewards
Solving MDPs

- Value Iteration
- Policy Iteration
- Reinforcement Learning
Optimal Quantities

- **The value (utility) of a state** \(s \):
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- **The value (utility) of a q-state** \((s,a) \):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- **The optimal policy**:
 \[\pi^*(s) = \text{optimal action from state } s \]
Snapshot of Demo – Gridworld V Values

VALUES AFTER 100 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Snapshot of Demo – Gridworld Q Values

Noise = 0.2
Discount = 0.9
Living reward = 0
Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Recursive definition of value:
 \[
 V^*(s) = \max_a Q^*(s, a)
 \]
 \[
 Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
 \]
 \[
 V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]
 \]
Racing Search Tree

- We’re doing way too much work with expectimax!

- Problem: States are repeated
 - Idea: Only compute needed quantities once

- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if $\gamma < 1$
Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps
 - Equivalently, it’s what a depth-k expectimax would give from s
Computing Time-Limited Values

$V_4(\quad) \quad V_4(\quad) \quad V_4(\quad)$

$V_3(\quad) \quad V_3(\quad) \quad V_3(\quad)$

$V_2(\quad) \quad V_2(\quad) \quad V_2(\quad)$

$V_1(\quad) \quad V_1(\quad) \quad V_1(\quad)$

$V_0(\quad) \quad V_0(\quad) \quad V_0(\quad)$
Value Iteration
The Bellman Equations

How to be optimal:
Step 1: Take correct first action
Step 2: Keep being optimal
Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values:

\[V^*(s) = \max_a Q^*(s, a) \]

\[Q^*(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over.
Value Iteration

- Bellman equations characterize the optimal values:

\[V^*(s) = \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right] \]

- Value iteration computes them:

\[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Value iteration is just a fixed point solution method
 - ... though the \(V_k \) vectors are also interpretable as timelimited values
Value Iteration Algorithm

- Start with $V_0(s) = 0$:
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:

$$V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

- Repeat until convergence

- Complexity of each iteration: $O(S^2A)$
- Number of iterations: $\text{poly}(|S|, |A|, 1/(1-\gamma))$
- Theorem: will converge to unique optimal values
$k=0$

Noise = 0.2
Discount = 0.9
Living reward = 0
k=1

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

Noise = 0.2
Discount = 0.9
Living reward = 0
Values after 3 iterations

k=3

Noise = 0.2
Discount = 0.9
Living reward = 0
$$k=4$$

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=5

VALUES AFTER 5 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=6$

VALUES AFTER 6 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=7

VALUES AFTER 7 ITERATIONS

0.62 0.74 0.85 1.00

0.50 0.57 -1.00

0.34 0.36 0.45 0.24

Noise = 0.2
Discount = 0.9
Living reward = 0
$k=8$

VALUES AFTER 8 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k = 9

VALUES AFTER 9 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
$k = 10$

VALUES AFTER 10 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=11

Noise = 0.2
Discount = 0.9
Living reward = 0
k=12

VALUES AFTER 12 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=100

VALUES AFTER 100 ITERATIONS

0.64 0.74 0.85 1.00
0.57 0.57 -1.00
0.49 0.43 0.48 0.28

Noise = 0.2
Discount = 0.9
Living reward = 0
How do we know the V_k vectors will converge?

Case 1: If the tree has maximum depth M, then V_M holds the actual untruncated values.

Case 2: If the discount is less than 1

- Sketch: For any state V_k and V_{k+1} can be viewed as depth $k+1$ expectimax results in nearly identical search trees.
- The max difference happens if big reward at $k+1$ level.
- That last layer is at best all R_{MAX}.
- But everything is discounted by γ^k that far out.
- So V_k and V_{k+1} are at most $\gamma^k \max |R|$ different.
- So as k increases, the values converge.
Computing Actions from Values

- Let’s imagine we have the optimal values $V^*(s)$
- How should we act?
 - It’s not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^*(s) = \arg \max_a \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V^*(s')]$$

- This is called policy extraction, since it gets the policy implied by the values
Computing Actions from Q-Values

- Let’s imagine we have the optimal q-values:
 \[\pi^*(s) = \arg \max_a Q^*(s, a) \]

- How should we act?
 - Completely trivial to decide!

- Important lesson: actions are easier to select from q-values than values!
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) \leftarrow \max_a \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right] \]

- Problem 1: It’s slow – \(O(S^2A)\) per iteration

- Problem 2: The “max” at each state rarely changes

- Problem 3: The policy often converges long before the values
VI \rightarrow Asynchronous VI

- Is it essential to back up \textit{all} states in each iteration?
 - No!

- States may be backed up
 - many times or not at all
 - in any order

- As long as no state gets starved...
 - convergence properties still hold!!
$k=1$

VALUES AFTER 1 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=2

VALUES AFTER 2 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
k=3

VALUES AFTER 3 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors same?
- Prefer backing a state
 - whose successors had most change

- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing a state update priority queue
 - for all predecessors