
1

CSE 473: Artificial Intelligence
Spring 2018

Constraint Satisfaction Problems - Part 2

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell,  Andrew Moore, Luke Zettlemoyer

1

Improving Backtracking

 General-purpose ideas give huge gains in speed

 Ordering:
 Which variable should be assigned next?
 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?

 Structure: Can we exploit the problem structure?

2

Filtering

4

 Filtering: Keep track of domains for unassigned variables and cross off bad options
 Forward checking: Cross off values that violate a constraint when added to the existing 

assignment

Filtering: Forward Checking

WA
SA

NT Q
NSW
V

[Demo: coloring -- forward checking]
5

Video of Demo Coloring – Backtracking with Forward Checking

6

Filtering: Constraint Propagation

 Forward checking only propagates information from assigned to unassigned
 It doesn't catch when two unassigned variables have no consistent assignment:

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V

7



2

Consistency of a Single Arc

 An arc X  Y is consistent iff for every x in the tail there is some y in the head which 
could be assigned without violating a constraint

 Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA SA

NT Q

NSW

V

8

Arc Consistency of an Entire CSP
 A simple form of propagation makes sure all arcs are consistent:

 Important: If X loses a value, neighbors of X need to be rechecked!
 Arc consistency detects failure earlier than forward checking
 Can be run as a preprocessor or after each assignment 
 What’s the downside of enforcing arc consistency?

Remember: Delete 
from  the tail!

WA SA

NT Q

NSW

V

9

AC-3 algorithm for Arc Consistency

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]
10

Limitations of Arc Consistency

 After enforcing arc 
consistency:
 Can have one solution left
 Can have multiple solutions left
 Can have no solutions left (and 

not know it)

 Arc consistency still runs 
inside a backtracking search!

What went 
wrong here?

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]11

K-Consistency

12

K-Consistency
 Increasing degrees of consistency

 1-Consistency (Node Consistency): Each single node’s domain has a value 
which meets that node’s unary constraints

 2-Consistency (Arc Consistency): For each pair of nodes, any consistent 
assignment to one can be extended to the other

 K-Consistency: For each k nodes, any consistent assignment to k-1 can be 
extended to the kth node.

 Higher k more expensive to compute

 (You need to know the algorithm for k=2 case: arc consistency)

13



3

Strong K-Consistency

 Strong k-consistency: also k-1, k-2, … 1 consistent

 Claim: strong n-consistency means we can solve without backtracking!

 Why?
 Choose any assignment to any variable
 Choose a new variable
 By 2-consistency, there is a choice consistent with the first
 Choose a new variable
 By 3-consistency, there is a choice consistent with the first 2
 …

 Lots of middle ground between arc consistency and n-consistency!  (e.g. k=3, called 
path consistency)

14

Video of Demo Arc Consistency – CSP Applet – n Queens

15

Video of Demo Coloring – Backtracking with Forward Checking –
Complex Graph

16

Video of Demo Coloring – Backtracking with Arc Consistency –
Complex Graph

17

Ordering

18

Ordering: Minimum Remaining Values

 Variable Ordering: Minimum remaining values (MRV):
 Choose the variable with the fewest legal left values in its domain

 Why min rather than max?
 Also called “most constrained variable”
 “Fail-fast” ordering

19



4

 Tie-breaker among MRV variables
 What is the very first state to color? (All have 3 values remaining.)

 Maximum degree heuristic:
 Choose the variable participating in the most constraints on remaining 

variables

 Why most rather than fewest constraints?

Ordering: Maximum Degree

20

Ordering: Least Constraining Value

 Value Ordering: Least Constraining Value
 Given a choice of variable, choose the least 

constraining value
 I.e., the one that rules out the fewest values in 

the remaining variables
 Note that it may take some computation to 

determine this!  (E.g., rerunning filtering)

 Why least rather than most?

 Combining these ordering ideas makes
1000 queens feasible

21

Rationale for MRV, MD, LCV

 We want to enter the most promising branch, but we also want 
to detect failure quickly

 MRV+MD:
 Choose the variable that is most likely to cause failure
 It must be assigned at some point, so if it is doomed to fail, better to 

find out soon

 LCV:
 We hope our early value choices do not doom us to failure
 Choose the value that is most likely to succeed

22

Structure

23

Problem Structure

 Extreme case: independent subproblems
 Example: Tasmania and mainland do not interact

 Independent subproblems are identifiable as 
connected components of constraint graph

 Suppose a graph of n variables can be broken into 
subproblems of only c variables:
 Worst-case solution cost is O((n/c)(dc)), linear in n
 E.g., n = 80, d = 2, c =20
 280 = 4 billion years at 10 million nodes/sec
 (4)(220) = 0.4 seconds at 10 million nodes/sec

24

Tree-Structured CSPs

 Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
 Compare to general CSPs, where worst-case time is O(dn)

 This property also applies to probabilistic reasoning (later): an example of the relation 
between syntactic restrictions and the complexity of reasoning

25



5

Tree-Structured CSPs

 Algorithm for tree-structured CSPs:
 Order: Choose a root variable, order variables so that parents precede children

 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2)  (why?)

27

Tree-Structured CSPs

 Claim 1: After backward pass, all root-to-leaf arcs are consistent
 Proof: Each XY was made consistent at one point and Y’s domain could not have 

been reduced thereafter (because Y’s children were processed before Y)

 Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
 Proof: Induction on position

 Why doesn’t this algorithm work with cycles in the constraint graph?

 Note: we’ll see this basic idea again with Bayes’ nets 28

Improving Structure

29

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors' domains

 Cutset conditioning: instantiate (in all ways) a set of variables such that 
the remaining constraint graph is a tree

 Cutset size c gives runtime O( (dc) (n-c) d2 ), very fast for small c 30

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP 
for each assignment

Solve the residual CSPs 
(tree structured)

Choose a cutset

31

Cutset Quiz

 Find the smallest cutset for the graph below.

32



6

Local Search for CSPs

34

Iterative Algorithms for CSPs

 Local search methods typically work with “complete” states, i.e., all variables assigned

 To apply to CSPs:
 Take an assignment with unsatisfied constraints
 Operators reassign variable values
 No fringe!  Live on the edge.

 Algorithm: While not solved,
 Variable selection: randomly select any conflicted variable
 Value selection: min-conflicts heuristic:

 Choose a value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

35

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

36

Performance of Min-Conflicts

 Given random initial state, can solve n-queens in almost constant time for arbitrary 
n with high probability (e.g., n = 10,000,000)!

 The same appears to be true for any randomly-generated CSP except in a narrow 
range of the ratio

39

Summary: CSPs

 CSPs are a special kind of search problem:
 States are partial assignments
 Goal test defined by constraints

 Basic solution: backtracking search

 Speed-ups:
 Ordering
 Filtering
 Structure

 Iterative min-conflicts is often effective in practice
40


