Constraint Satisfaction Problems - Part 2

Steve Tanimoto

Slides from:
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer
Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
- Which variable should be assigned next?
- In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?
Filtering
Filtering: Keep track of domains for unassigned variables and cross off bad options

Forward checking: Cross off values that violate a constraint when added to the existing assignment

[Demo: coloring -- forward checking]
Filtering: Constraint Propagation

Forward checking only propagates information from assigned to unassigned.

It doesn't catch when two unassigned variables have no consistent assignment:

NT and SA cannot both be blue!

Why didn't we detect this yet?

 Constraint propagation: reason from constraint to constraint
Consistency of a Single Arc

An arc $X \rightarrow Y$ is consistent iff for every x in the tail there is some y in the head which could be assigned without violating a constraint.

Forward checking: Enforcing consistency of arcs pointing to each new assignment.
Arc Consistency of an Entire CSP

A simple form of propagation makes sure all arcs are consistent:

Important: If X loses a value, neighbors of X need to be rechecked!

Arc consistency detects failure earlier than forward checking.

It can be run as a preprocessor or after each assignment.

What’s the downside of enforcing arc consistency?

Remember: Delete from the tail!
AC-3 algorithm for Arc Consistency

```plaintext
function AC-3(csp) returns the CSP, possibly with reduced domains
  inputs: csp, a binary CSP with variables \{X_1, X_2, \ldots, X_n\}
  local variables: queue, a queue of arcs, initially all the arcs in csp
  while queue is not empty do
    (X_i, X_j) ← REMOVE-FIRST(queue)
    if REMOVE-INCONSISTENT-VALUES(X_i, X_j) then
      for each X_k in NEIGHBORS[X_i] do
        add (X_k, X_i) to queue

function REMOVE-INCONSISTENT-VALUES(X_i, X_j) returns true iff succeeds
  removed ← false
  for each x in DOMAIN[X_i] do
    if no value y in DOMAIN[X_j] allows (x, y) to satisfy the constraint X_i ← X_j
      then delete x from DOMAIN[X_i]; removed ← true
  return removed
```

- Runtime: $O(n^2d^3)$, can be reduced to $O(n^2d^2)$
- ... but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- not shown]
Limitations of Arc Consistency

- After enforcing arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)

- Arc consistency still runs inside a backtracking search!

What went wrong here?

[Demo: coloring -- forward checking]
[Demo: coloring -- arc consistency]
K-Consistency
K-Consistency

Increasing degrees of consistency

- 1-Consistency (Node Consistency): Each single node’s domain has a value which meets that node’s unary constraints

- 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other

- K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

Higher k more expensive to compute

(You need to know the algorithm for k=2 case: arc consistency)
Strong K-Consistency

Strong k-consistency: also k-1, k-2, ... 1 consistent

Claim: strong n-consistency means we can solve without backtracking!

Why?

- Choose any assignment to any variable
- Choose a new variable
- By 2-consistency, there is a choice consistent with the first
- Choose a new variable
- By 3-consistency, there is a choice consistent with the first 2

... lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called path consistency)
Demo of Demo Coloring – Backtracking with Forward Checking
Complex Graph
Video of Demo Coloring – Backtracking with Arc Consistency

Complex Graph
Ordering
Variable Ordering: Minimum remaining values (MRV):

- Choose the variable with the fewest legal left values in its domain

Why min rather than max?

Also called “most constrained variable”

Fail-fast” ordering
Tie-breaker among MRV variables

- What is the very first state to color? (All have 3 values remaining.)

Maximum degree heuristic:

- Choose the variable participating in the most constraints on remaining variables

Why most rather than fewest constraints?
Ordering: Least Constraining Value

- Given a choice of variable, choose the *least constraining value*
- I.e., the one that rules out the fewest values in the remaining variables
- Note that it may take some computation to determine this! (E.g., rerunning filtering)

Why least rather than most?

Combining these ordering ideas makes 1000 queens feasible
We want to enter the most promising branch, but we also want to detect failure quickly.

MRV+MD:
- Choose the variable that is most likely to cause failure
- It must be assigned at some point, so if it is doomed to fail, better to find out soon

LCV:
- We hope our early value choices do not doom us to failure
- Choose the value that is most likely to succeed
Problem Structure

Extreme case: independent subproblems
- Example: Tasmania and mainland do not interact

Independent subproblems are identifiable as connected components of constraint graph

Suppose a graph of n variables can be broken into subproblems of only c variables:
- Worst-case solution cost is $O((n/c)(d^c))$, linear in n
- E.g., $n = 80$, $d = 2$, $c = 20$
- $2^{80} = 4$ billion years at 10 million nodes/sec
- $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec
Theorem: if the constraint graph has no loops, the CSP can be solved in $O(n d^2)$ time.

Compare to general CSPs, where worst-case time is $O(d^n)$

This property also applies to probabilistic reasoning (later): an example of the relationship between syntactic restrictions and the complexity of reasoning.
Algorithm for tree-structured CSPs:

- **Order**: Choose a root variable, order variables so that parents precede children.

- **Remove backward**: For $i = n : 2$, apply $\text{RemoveInconsistent}($Parent$(X_i), X_i)$

- **Assign forward**: For $i = 1 : n$, assign X_i consistently with Parent(X_i)

Runtime: $O(n d^2)$ (why?)
Claim 1: After backward pass, all root-to-leaf arcs are consistent.

Proof: Each $X \rightarrow Y$ was made consistent at one point and Y’s domain could not have been reduced thereafter (because Y’s children were processed before Y).

Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack.

Proof: Induction on position.

Why doesn’t this algorithm work with cycles in the constraint graph?

Note: we’ll see this basic idea again with Bayes’ nets.
Improving Structure
Nearly Tree-Structured CSPs

Conditioning: instantiate a variable, prune its neighbors' domains

Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree

Cutset size c gives runtime $O\left((d^c) (n-c) d^2 \right)$, very fast for small c
Cutset Conditioning

Choose a cutset

Instantiate the cutset (all possible ways)

Compute residual CSP for each assignment

Solve the residual CSPs (tree structured)
Cutset Quiz

Find the smallest cutset for the graph below.
Local Search for CSPs
Iterative Algorithms for CSPs

Local search methods typically work with “complete” states, i.e., all variables assigned.

To apply to CSPs:
- Take an assignment with unsatisfied constraints
 - Operators reassign variable values
- No fringe! Live on the edge.

Algorithm: While not solved,
- Variable selection: randomly select any conflicted variable
- Value selection: min-conflicts heuristic:
 - Choose a value that violates the fewest constraints
 - I.e., hill climb with $h(n) = \text{total number of violated constraints}$
Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $c(n) =$ number of attacks
Performance of Min-Conflicts

Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., n = 10,000,000)!

The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$
CSPs are a special kind of search problem:
- States are partial assignments
- Goal test defined by constraints

Basic solution: backtracking search

Speed-ups:
- Ordering
- Filtering
- Structure

Iterative min-conflicts is often effective in practice