CSE 473: Artificial Intelligence Winter 2017

Constraint Satisfaction Problems - Part 1 of 2

Steve Tanimoto

des from:

ox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Previously

- Formulating problems as search
- Blind search algorithms
 - Depth first
 - Breadth first (uniform cost)
 - Iterative deepening
- Heuristic Search
 - Best first
 - Beam (Hill climbing)
 - A*
 - IDA*
- Heuristic generation
 - Exact soln to a relaxed problem
 - Pattern databases
- Local Search
 - Hill climbing, random moves, random restarts, simulated annealing

What is Search For?

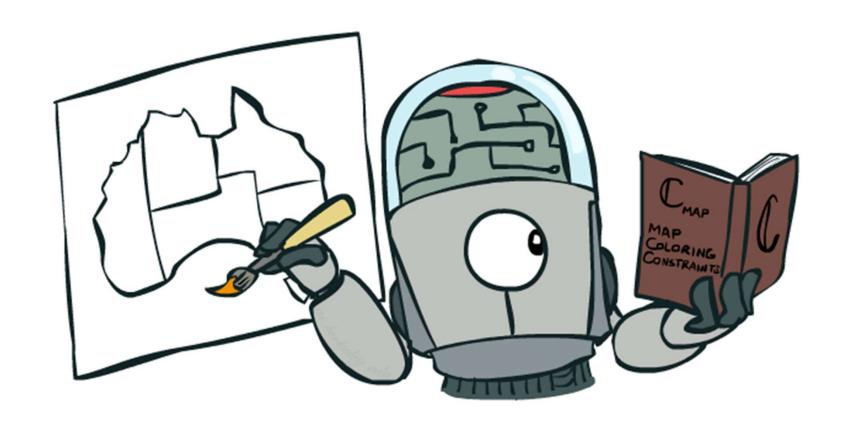
lanning: sequences of actions

- The *path to the goal* is the important thing
- Paths have various costs, depths
- Assume little about problem structure

lentification: assignments to variables

- The **goal itself** is important, **not the path**
- All paths at the same depth (for some formulations)

Constraint Satisfaction Problems



Ps are structured (factored) identification problems

Constraint Satisfaction Problems

tandard search problems:

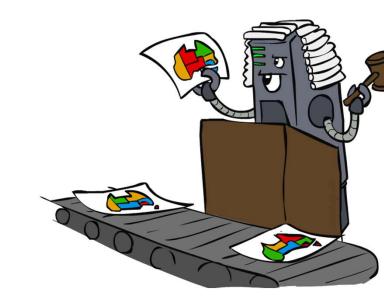
- State is a "black box": arbitrary data structure
- Goal test can be any function over states
- Successor function can also be anything

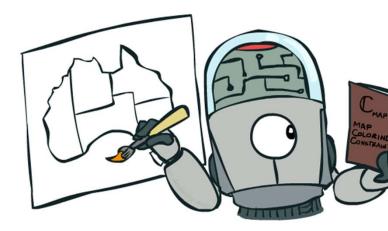
onstraint satisfaction problems (CSPs):

- A special subset of search problems
- State is defined by variables X_i with values from a domain D (sometimes D depends on i)
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

Taking use of CSP formulation allows for ptimized algorithms

Typical example of trading generality for utility (in this case, speed)



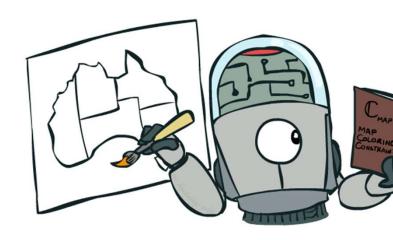


Constraint Satisfaction Problems

- "Factoring" the state space
- Representing the state space in a knowledge representation

onstraint satisfaction problems (CSPs):

- A special subset of search problems
- State is defined by variables X_i with values from a domain D (sometimes D depends on i)
- Goal test is a set of constraints specifying allowable combinations of values for subsets of variables



CSP Example: N-Queens

Is there a queen at X_{ij} ?

ormulation 1:

Variables: X_{ij}

Domains: $\{0,1\}$

Constraints

$$\forall i, j, k \ (X_{ij}, X_{ik}) \in \{(0,0), (0,1), (1,0)\}$$

 $\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0), (0,1), (1,0)\}$
 $\forall i, j, k \ (X_{ij}, X_{i+k,j-k}) \in \{(0,0), (0,1), (1,0)\}$

$$\sum_{i,j} X_{ij} = N$$

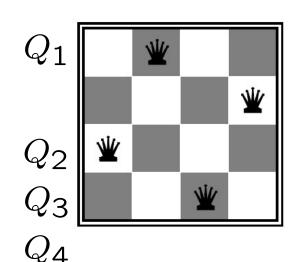
CSP Example: N-Queens

What column is the queen on for row k?

rmulation 2:

Variables: Q_k

Domains: $\{1, 2, 3, ... N\}$

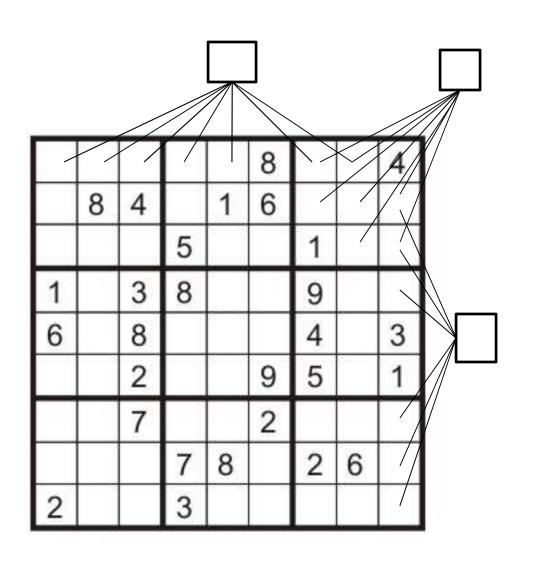


Constraints:

 $\forall i, j \text{ non-threatening}(Q_i, Q_j)$ Implicit:

 $(Q_1, Q_2) \in \{(1,3), (1,4), \ldots\}$ **Explicit:**

CSP Example: Sudoku



- Variables:
 - Each (open) square
- Domains:
 - **•** {1,2,...,9}
- Constraints:

9-way alldiff for each column
9-way alldiff for each row
9-way alldiff for each region
(or can have a bunch
of pairwise inequality
constraints)

Propositional Logic

$$((p \leftrightarrow q) \land r) \lor (p \land q \land \sim r)$$

/ariables: propositional variables

Domains: {T, F}

Constraints: logical formula

CSP Example: Map Coloring

ariables: WA, NT, Q, NSW, V, SA, T

omains: $D = \{red, green, blue\}$

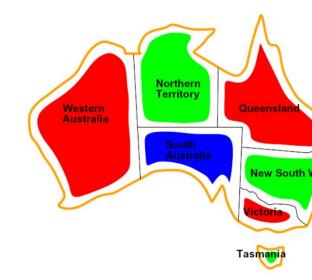
onstraints: adjacent regions must have different blors

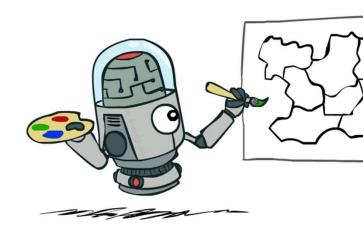
Implicit: $WA \neq NT$

Explicit: $(WA, NT) \in \{(red, green), (red, blue), ...\}$

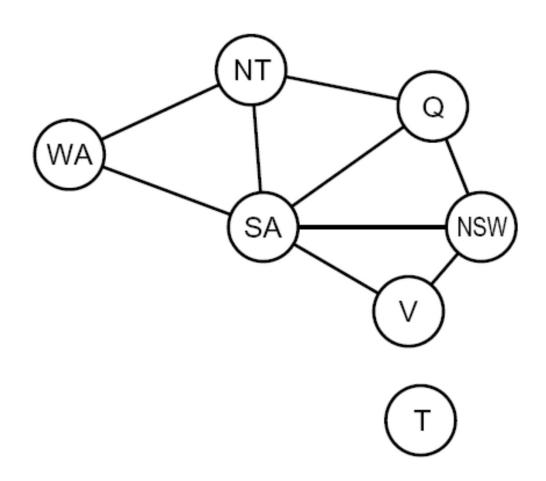
olutions are assignments satisfying all onstraints, e.g.:

{WA=red, NT=green, Q=red, NSW=green, V=red, SA=blue, T=green}





Constraint Graphs

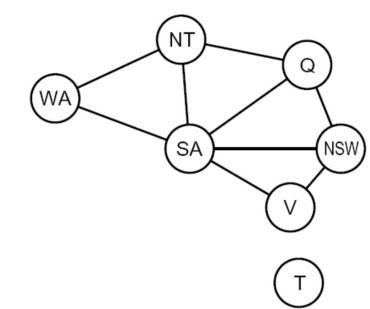


Constraint Graphs

inary CSP: each constraint relates (at most) two ariables

inary constraint graph: nodes are variables, arcs now constraints

eneral-purpose CSP algorithms use the graph tructure to speed up search. E.g., Tasmania is an idependent subproblem!



Example: Cryptarithmetic

'ariables:

 $F T U W R O X_1 X_2 X_3$

omains:

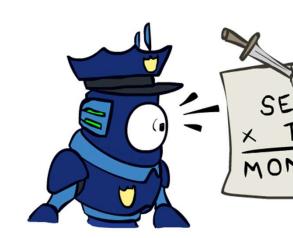
 $\{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$

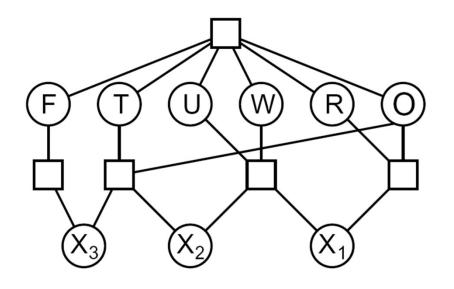
onstraints:

 $\mathsf{alldiff}(F,T,U,W,R,O)$

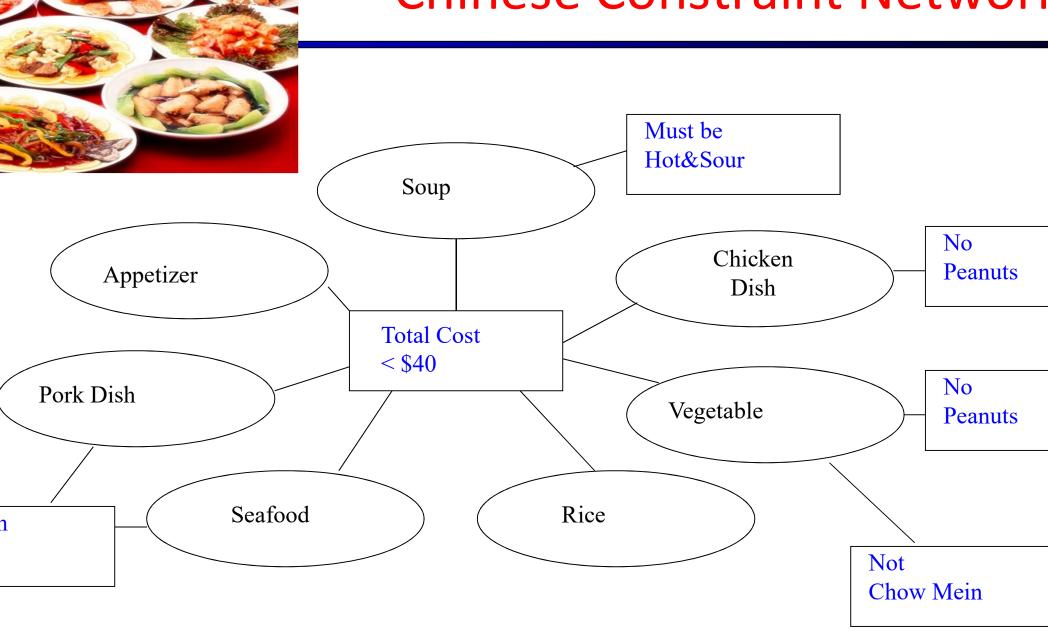
$$O + O = R + 10 \cdot X_1$$

• •





Chinese Constraint Networl



Real-World CSPs

ignment problems: e.g., who teaches what class

netabling problems: e.g., which class is offered when and where?

dware configuration

e assignment in airports

ice Shuttle Repair

nsportation scheduling

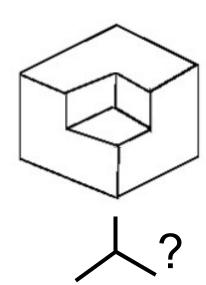
tory scheduling

ots more!

Example: The Waltz Algorithm

he Waltz algorithm is for interpreting ne drawings of solid polyhedra as 3D bjects

n early example of an AI computation osed as a CSP



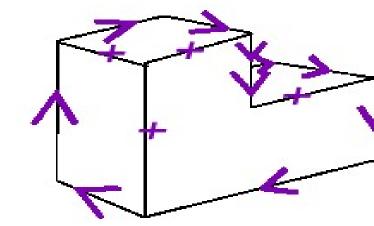
Waltz on Simple Scenes

Assume all objects:

- Have no shadows or cracks
- Three-faced vertices
- "General position": no junctions change with small movements of the eye.

Then each line on image is one of the following:

- Boundary line (edge of an object) (>) with right hand of arrow denoting "solid" and left hand denoting "space"
- Interior convex edge (+)
- Interior concave edge (-)



Legal Junctions

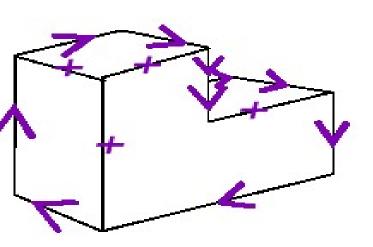
Only certain junctions are physically possible

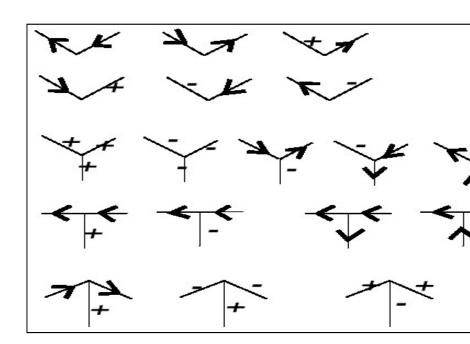
How can we formulate a CSP to label an image?

Variables: edges

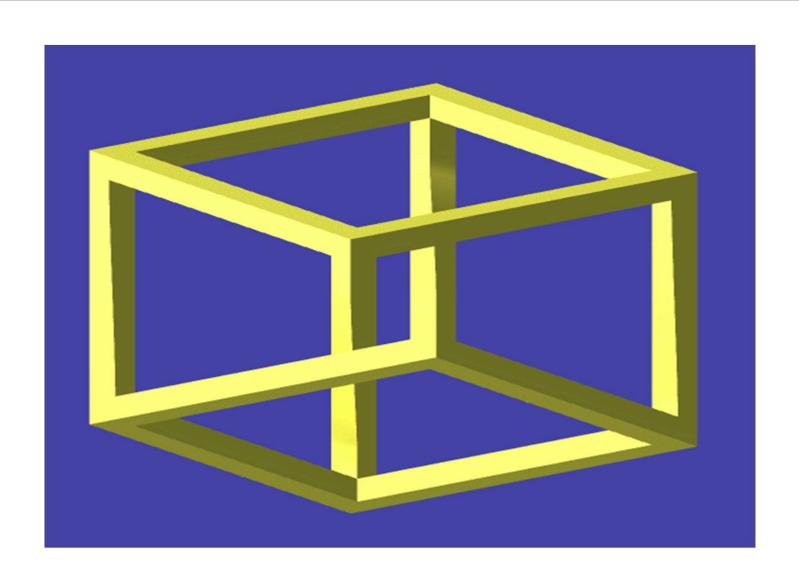
Domains: >, <, +, -

Constraints: legal junction types





Slight Problem: Local vs Global Consistency



Varieties of CSPs

Varieties of CSP Variables

iscrete Variables

Finite domains

- Size d means $O(d^n)$ complete assignments
- E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)

Infinite domains (integers, strings, etc.)

- E.g., job scheduling, variables are start/end times for each job
- Linear constraints solvable, nonlinear undecidable

ontinuous variables

E.g., start/end times for Hubble Telescope observations Linear constraints solvable in polynomial time by linear program methods (see CSE 521 for a bit of LP theory)

Varieties of CSP Constraints

arieties of Constraints

Unary constraints involve a single variable (equivalent to reducing domains), e.g.:

$$SA \neq green$$

Binary constraints involve pairs of variables, e.g.:

$$SA \neq WA$$

Higher-order constraints involve 3 or more variables: e.g., cryptarithmetic column constraints

references (soft constraints):

- E.g., red is better than green
- Often representable by a cost for each variable assignment
- Gives constrained optimization problems
- (We'll ignore these until we get to Bayes' nets)

Solving CSPs

CSP as Search

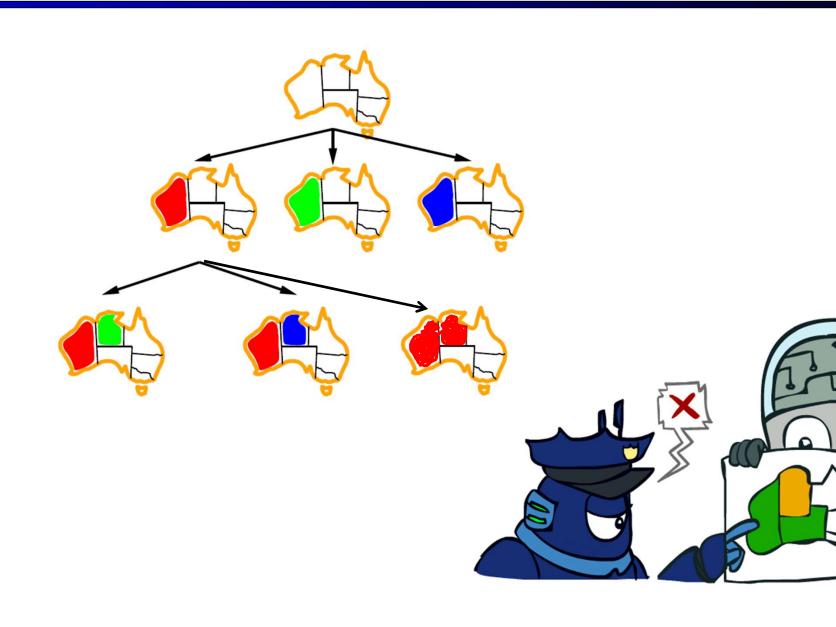
tates

perators

nitial State

oal State

Standard Depth First Search



Standard Search Formulation

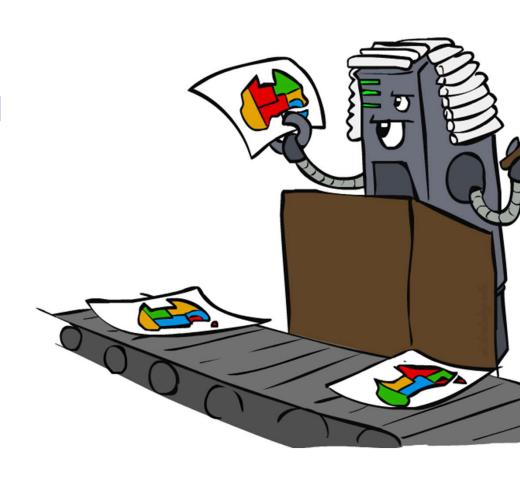
andard search formulation of CSPs

ates defined by the values assigned far (partial assignments)

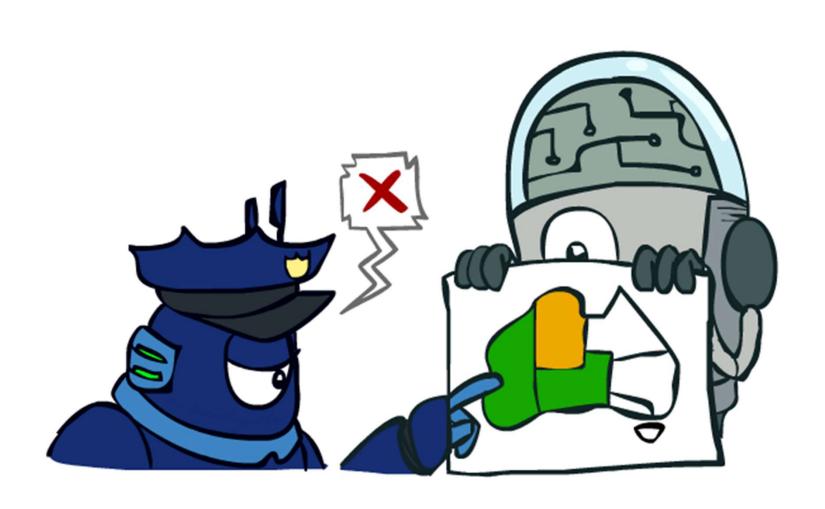
Initial state: the empty assignment, {}
Successor function: assign a value to an unassigned variable

Goal test: the current assignment is complete and satisfies all constraints

e'll start with the straightforward, aïve approach, then improve it



Backtracking Search



Backtracking Search

acktracking search is the basic uninformed algorithm for solving CSPs

lea 1: One variable at a time

- Variable assignments are commutative, so fix ordering
- I.e., [WA = red then NT = green] same as [NT = green then WA = red]
- Only need to consider assignments to a single variable at each step

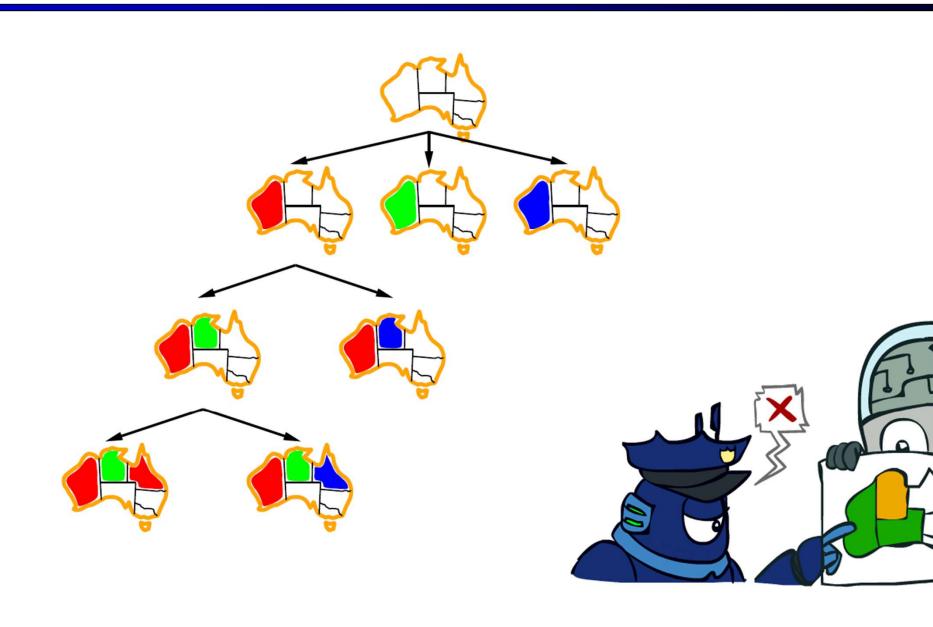
lea 2: Check constraints as you go

- I.e. consider only values which do not conflict previous assignments
- Might have to do some computation to check the constraints
- "Incremental goal test"

epth-first search with these two improvements called *backtracking search*

an solve n-queens for $n \approx 25$

Backtracking Example



Backtracking Search

```
function BACKTRACKING-SEARCH(csp) returns solution/failure
  return Recursive-Backtracking({ }, csp)
function Recursive-Backtracking (assignment, csp) returns soln/failure
   if assignment is complete then return assignment
   var \leftarrow \text{Select-Unassigned-Variable}(\text{Variables}[csp], assignment, csp)
   for each value in Order-Domain-Values (var, assignment, csp) do
       if value is consistent with assignment given Constraints [csp] then
            add \{var = value\} to assignment
            result \leftarrow \text{Recursive-Backtracking}(assignment, csp)
           if result \neq failure then return result
           remove \{var = value\} from assignment
  return failure
```

What are the choice points?

Backtracking Search

ind of depth first search

it complete?

Improving Backtracking

eneral-purpose ideas give huge gains in speed

rdering:

Which variable should be assigned next?

In what order should its values be tried?

Itering: Can we detect inevitable failure early?

ructure: Can we exploit the problem structure?

Jext: Constraint Satisfaction Problems - Part