
CSE 473: Artificial Intelligence
Winter 2017

Constraint Satisfaction Problems - Part 1 of 2

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Previously

 Formulating problems as search
 Blind search algorithms

 Depth first
 Breadth first (uniform cost)
 Iterative deepening

 Heuristic Search
 Best first

 Beam (Hill climbing)
 A*
 IDA*

 Heuristic generation
 Exact soln to a relaxed problem
 Pattern databases

 Local Search
 Hill climbing, random moves, random restarts, simulated annealing

What is Search For?

Planning: sequences of actions
 The path to the goal is the important thing
 Paths have various costs, depths
 Assume little about problem structure

Identification: assignments to variables
 The goal itself is important, not the path
 All paths at the same depth (for some formulations)

Constraint Satisfaction Problems

CSPs are structured (factored) identification problems

Constraint Satisfaction Problems

Standard search problems:
 State is a “black box”: arbitrary data structure
 Goal test can be any function over states
 Successor function can also be anything

Constraint satisfaction problems (CSPs):
 A special subset of search problems
 State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
 Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

Making use of CSP formulation allows for
optimized algorithms
 Typical example of trading generality for utility (in this

case, speed)

Constraint Satisfaction Problems

Constraint satisfaction problems (CSPs):
 A special subset of search problems
 State is defined by variables Xi with values from a

domain D (sometimes D depends on i)
 Goal test is a set of constraints specifying allowable

combinations of values for subsets of variables

 “Factoring” the state space

 Representing the state space in a
knowledge representation

CSP Example: N-Queens

Formulation 1:
 Variables:
 Domains:
 Constraints

CSP Example: N-Queens

Formulation 2:
Variables:

Domains:

Constraints:

Implicit:

Explicit:

CSP Example: Sudoku

 Variables:
 Each (open) square

 Domains:
 {1,2,…,9}

 Constraints:

9-way alldiff for each row

9-way alldiff for each column

9-way alldiff for each region
(or can have a bunch
of pairwise inequality
constraints)

Propositional Logic

Variables:
Domains:
Constraints:

propositional variables
{T, F}
logical formula

CSP Example: Map Coloring

Variables:

Domains:

Constraints: adjacent regions must have different
colors

Solutions are assignments satisfying all
constraints, e.g.:

Implicit:

Explicit:

Constraint Graphs

Constraint Graphs

Binary CSP: each constraint relates (at most) two
variables

Binary constraint graph: nodes are variables, arcs
show constraints

General-purpose CSP algorithms use the graph
structure to speed up search. E.g., Tasmania is an
independent subproblem!

Example: Cryptarithmetic

Variables:

Domains:

Constraints:

Chinese Constraint Network

Soup

Total Cost
< $40

Chicken
Dish

Vegetable

RiceSeafood

Pork Dish

Appetizer

Must be
Hot&Sour

No
Peanuts

No
Peanuts

Not
Chow Mein

Not Both

Real-World CSPs

Assignment problems: e.g., who teaches what class
Timetabling problems: e.g., which class is offered when and where?
Hardware configuration
Gate assignment in airports
Space Shuttle Repair
Transportation scheduling
Factory scheduling

lots more!

Example: The Waltz Algorithm

The Waltz algorithm is for interpreting
line drawings of solid polyhedra as 3D
objects
An early example of an AI computation
posed as a CSP

?

Waltz on Simple Scenes

Assume all objects:
 Have no shadows or cracks
 Three-faced vertices
 “General position”: no junctions change with

small movements of the eye.
Then each line on image is one of the
following:
 Boundary line (edge of an object) (>) with right

hand of arrow denoting “solid” and left hand
denoting “space”

 Interior convex edge (+)
 Interior concave edge (-)

Legal Junctions

Only certain junctions are physically possible
How can we formulate a CSP to label an image?
Variables: edges
Domains: >, <, +, -
Constraints: legal junction types

Slight Problem: Local vs Global Consistency

Varieties of CSPs

Varieties of CSP Variables

Discrete Variables
 Finite domains

 Size d means O(dn) complete assignments
 E.g., Boolean CSPs, including Boolean satisfiability (NP-

complete)
 Infinite domains (integers, strings, etc.)

 E.g., job scheduling, variables are start/end times for each job
 Linear constraints solvable, nonlinear undecidable

Continuous variables
 E.g., start/end times for Hubble Telescope observations
 Linear constraints solvable in polynomial time by linear

program methods (see CSE 521 for a bit of LP theory)

Varieties of CSP Constraints

Varieties of Constraints
 Unary constraints involve a single variable (equivalent to

reducing domains), e.g.:

 Binary constraints involve pairs of variables, e.g.:

 Higher-order constraints involve 3 or more variables:
e.g., cryptarithmetic column constraints

Preferences (soft constraints):
 E.g., red is better than green
 Often representable by a cost for each variable assignment
 Gives constrained optimization problems
 (We’ll ignore these until we get to Bayes’ nets)

Solving CSPs

CSP as Search

States
Operators
Initial State
Goal State

Standard Depth First Search

Standard Search Formulation

Standard search formulation of CSPs

States defined by the values assigned
so far (partial assignments)
 Initial state: the empty assignment, {}
 Successor function: assign a value to an

unassigned variable
 Goal test: the current assignment is

complete and satisfies all constraints

We’ll start with the straightforward,
naïve approach, then improve it

Backtracking Search

Backtracking Search

Backtracking search is the basic uninformed algorithm for solving CSPs

Idea 1: One variable at a time
 Variable assignments are commutative, so fix ordering
 I.e., [WA = red then NT = green] same as [NT = green then WA = red]
 Only need to consider assignments to a single variable at each step

Idea 2: Check constraints as you go
 I.e. consider only values which do not conflict previous assignments
 Might have to do some computation to check the constraints
 “Incremental goal test”

Depth-first search with these two improvements
is called backtracking search

Can solve n-queens for n  25

Backtracking Example

Backtracking Search

 What are the choice points?

[Demo: coloring -- backtracking

Backtracking Search

Kind of depth first search
Is it complete?

Improving Backtracking

General-purpose ideas give huge gains in speed

Ordering:
 Which variable should be assigned next?
 In what order should its values be tried?

Filtering: Can we detect inevitable failure early?

Structure: Can we exploit the problem structure?

Next: Constraint Satisfaction Problems - Part 2

