
3/22/2018

1

CSE 473: Artificial Intelligence
Spring 2018

Heuristics & Pattern 
Databases for Search

With thanks to Dan Weld, Dan Klein, Richard Korf, Stuart Russell,  Andrew 
Moore, and Luke Zettlemoyer

Steve Tanimoto

Recap: Search Problem

 States 
 configurations of the world

 Successor function: 
 function from states to lists of (state, action, cost) 

triples

 Start state
 Goal test

N-Queens as Search?

 Given N x N chess board

 Can you place N queens so they don’t fight?

3Cool picture from Dan Klein & Pieter Abeel ai.berkeley.edu

States are Board Positions

4
Etc…

Search Methods
 Depth first search (DFS)
 Breadth first search (BFS)
 Iterative deepening depth-first search (IDS)
 Best first search
 Uniform cost search (UCS)
 Greedy search
 A*
 Iterative Deepening A* (IDA*)
 Beam search, hill climbing
 Stochastic Search
 Constraint Satisfaction 5

IDA* for N-Queens?

 Given N x N chess board

 Can you place N queens so they don’t fight?

6Cool picture from Dan Klein & Pieter Abeel ai.berkeley.edu



3/22/2018

2

7

Best-First Search
 Generalization of breadth-first search

 Fringe = Priority queue of nodes to be explored

 Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty

Node = head(queue)
If goal?(node) then return node
Add children of node to queue

“expanding the node”

Iterative-Deepening A*

 Like iterative-deepening depth-first, but...
 Depth bound modified to be an f-limit
 Start with  f-limit = h(start)
 Prune any node if f(node) > f-limit
 Next f-limit = min-cost of any node pruned

8

a

b

c

d

e

f

FL=15

FL=21

IDA* Analysis

 Complete & Optimal (a la A*)

 Space usage  depth of solution

 Each iteration is DFS - no priority queue!

 # nodes expanded relative to A*
 Depends on # unique values of heuristic function

 In 8 puzzle: few values  close to # A* expands

 In eastern-europe travel: each f value is unique
 1+2+…+n  = O(n2)    where n=nodes A* expands

if n is too big for main memory, n2 is too long to wait!

 Generates duplicate nodes in cyclic graphs
9

Beam Search

 Idea
 Best first 

 But discard all but N best items on priority queue

 Evaluation
 Complete?

 Time Complexity?

 Space Complexity?

14© Daniel S. Weld

No

O(b^d)

O(b + N)

Hill Climbing

15© Daniel S. Weld

Idea
 Always choose best child; no backtracking

 Beam search with |queue| = 1

Problems?

• Local maxima

• Plateaus

• Diagonal ridges 

“Gradient ascent”

Heuristics
It’s what makes search actually work



3/22/2018

3

Admissible Heuristics

 f(x) = g(x) + h(x)

 g: cost so far

 h: underestimate of remaining costs

18© Daniel S. Weld

Where do heuristics come from?

Relaxed Problems

 Derive admissible heuristic from exact cost of 
a solution to a relaxed version of problem

19© Daniel S. Weld

# out of place = 2,   true distance to goal = 3

• Cost of optimal soln to relaxed problem  cost of 
optimal soln for real problem

 For blocks world, distance = # move operations 

 heuristic = number of misplaced blocks

 What is relaxed problem?

What’s being relaxed?
Heuristic = Euclidean distance

Traveling Salesman Problem

21

What can be
Relaxed?

Objective: shortest path visiting every city

Heuristics for eight puzzle

 What can we relax?

22

7  2   3

8   3
5   1    6

1   2   3

7   8
4   5   6

start goal



h1 = number of tiles in wrong place

h2 =  distances of tiles from correct loc

Importance of Heuristics
h1 = number of tiles in wrong place

23

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25

10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

7    2     3

8    5

4    1     6



3/22/2018

4

Importance of Heuristics
h1 = number of tiles in wrong place

h2 =  distances of tiles from correct loc

24

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25

10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

7    2     3

8    5

4    1     6

Decrease effective branching factor

Need More Power!

Performance of Manhattan Distance Heuristic
 8 Puzzle < 1 second

 15 Puzzle 1 minute

 24 Puzzle 65000 years

Need even better heuristics!

25© Daniel S. Weld
Adapted from Richard Korf presentation

Subgoal Interactions 

 Manhattan distance assumes 
 Each tile can be moved independently of others

 Underestimates because 
 Doesn’t consider interactions between tiles

26© Daniel S. Weld
Adapted from Richard Korf presentation

1   2   3

7   8
4   6   5

Pattern Databases

 Pick any subset of tiles
 E.g., 3, 7, 11, 12, 13, 14, 15

 (or as drawn)

 Precompute a table 
 Optimal cost of solving just these tiles

 For all possible configurations
 57 Million in this case

 Use A* or IDA* 
 State = position of just these tiles (& blank)

27© Daniel S. Weld
Adapted from Richard Korf presentation

[Culberson & Schaeffer 1996]

9  10  11 12
13 14  15

1   2   3   4
5  6   7   8

Using a Pattern Database

 As each state is generated
 Use position of chosen tiles as index into DB

 Use lookup value as heuristic, h(n)

 Admissible?

28© Daniel S. Weld
Adapted from Richard Korf presentation

Combining Multiple Databases

 Can choose another set of tiles
 Precompute multiple tables

 How combine table values?

 E.g. Optimal solutions to Rubik’s cube
 First found w/ IDA* using pattern DB heuristics

 Multiple DBs were used (dif cubie subsets )

 Most problems solved optimally in 1 day

 Compare with 574,000 years for IDDFS

29
© Daniel S. Weld Adapted from Richard Korf presentation

9  10  11 12
13 14  15

1   2   3   4
5  6   7   8



3/22/2018

5

Drawbacks of Standard Pattern DBs

 Since we can only take max
 Diminishing returns on additional DBs

 Would like to be able to add values

30© Daniel S. Weld
Adapted from Richard Korf presentation

Disjoint Pattern DBs

 Partition tiles into disjoint sets
 For each set, precompute table

 E.g. 8 tile DB has 519 million entries

 And 7 tile DB has 58 million

 During search
 Look up heuristic values for each set

 Can add values without overestimating!

 Manhattan distance is a special case of this idea 
where each set is a single tile

31
© Daniel S. Weld Adapted from Richard Korf presentation

9  10  11 12
13 14  15

1   2   3   4
5  6   7   8

Performance

 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs shown previously solves 15 

Puzzles optimally in 30 milliseconds

 24 Puzzle: 12 million x speedup vs Manhattan 
 IDA* can solve random instances in 2 days.

 Requires 4 DBs as shown
 Each DB has 128 million entries

 Without PDBs: 65,000 years

32
© Daniel S. Weld Adapted from Richard Korf presentation


