
3/22/2018

1

CSE 473: Artificial Intelligence
Spring 2018

Heuristics & Pattern
Databases for Search

With thanks to Dan Weld, Dan Klein, Richard Korf, Stuart Russell, Andrew
Moore, and Luke Zettlemoyer

Steve Tanimoto

Recap: Search Problem

 States
 configurations of the world

 Successor function:
 function from states to lists of (state, action, cost)

triples

 Start state
 Goal test

N-Queens as Search?

 Given N x N chess board

 Can you place N queens so they don’t fight?

3Cool picture from Dan Klein & Pieter Abeel ai.berkeley.edu

States are Board Positions

4
Etc…

Search Methods
 Depth first search (DFS)
 Breadth first search (BFS)
 Iterative deepening depth-first search (IDS)
 Best first search
 Uniform cost search (UCS)
 Greedy search
 A*
 Iterative Deepening A* (IDA*)
 Beam search, hill climbing
 Stochastic Search
 Constraint Satisfaction 5

IDA* for N-Queens?

 Given N x N chess board

 Can you place N queens so they don’t fight?

6Cool picture from Dan Klein & Pieter Abeel ai.berkeley.edu

3/22/2018

2

7

Best-First Search
 Generalization of breadth-first search

 Fringe = Priority queue of nodes to be explored

 Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty

Node = head(queue)
If goal?(node) then return node
Add children of node to queue

“expanding the node”

Iterative-Deepening A*

 Like iterative-deepening depth-first, but...
 Depth bound modified to be an f-limit
 Start with f-limit = h(start)
 Prune any node if f(node) > f-limit
 Next f-limit = min-cost of any node pruned

8

a

b

c

d

e

f

FL=15

FL=21

IDA* Analysis

 Complete & Optimal (a la A*)

 Space usage depth of solution

 Each iteration is DFS - no priority queue!

 # nodes expanded relative to A*
 Depends on # unique values of heuristic function

 In 8 puzzle: few values close to # A* expands

 In eastern-europe travel: each f value is unique
 1+2+…+n = O(n2) where n=nodes A* expands

if n is too big for main memory, n2 is too long to wait!

 Generates duplicate nodes in cyclic graphs
9

Beam Search

 Idea
 Best first

 But discard all but N best items on priority queue

 Evaluation
 Complete?

 Time Complexity?

 Space Complexity?

14© Daniel S. Weld

No

O(b^d)

O(b + N)

Hill Climbing

15© Daniel S. Weld

Idea
 Always choose best child; no backtracking

 Beam search with |queue| = 1

Problems?

• Local maxima

• Plateaus

• Diagonal ridges

“Gradient ascent”

Heuristics
It’s what makes search actually work

3/22/2018

3

Admissible Heuristics

 f(x) = g(x) + h(x)

 g: cost so far

 h: underestimate of remaining costs

18© Daniel S. Weld

Where do heuristics come from?

Relaxed Problems

 Derive admissible heuristic from exact cost of
a solution to a relaxed version of problem

19© Daniel S. Weld

out of place = 2, true distance to goal = 3

• Cost of optimal soln to relaxed problem cost of
optimal soln for real problem

 For blocks world, distance = # move operations

 heuristic = number of misplaced blocks

 What is relaxed problem?

What’s being relaxed?
Heuristic = Euclidean distance

Traveling Salesman Problem

21

What can be
Relaxed?

Objective: shortest path visiting every city

Heuristics for eight puzzle

 What can we relax?

22

7 2 3

8 3
5 1 6

1 2 3

7 8
4 5 6

start goal

h1 = number of tiles in wrong place

h2 = distances of tiles from correct loc

Importance of Heuristics
h1 = number of tiles in wrong place

23

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25

10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

7 2 3

8 5

4 1 6

3/22/2018

4

Importance of Heuristics
h1 = number of tiles in wrong place

h2 = distances of tiles from correct loc

24

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25

10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

7 2 3

8 5

4 1 6

Decrease effective branching factor

Need More Power!

Performance of Manhattan Distance Heuristic
 8 Puzzle < 1 second

 15 Puzzle 1 minute

 24 Puzzle 65000 years

Need even better heuristics!

25© Daniel S. Weld
Adapted from Richard Korf presentation

Subgoal Interactions

 Manhattan distance assumes
 Each tile can be moved independently of others

 Underestimates because
 Doesn’t consider interactions between tiles

26© Daniel S. Weld
Adapted from Richard Korf presentation

1 2 3

7 8
4 6 5

Pattern Databases

 Pick any subset of tiles
 E.g., 3, 7, 11, 12, 13, 14, 15

 (or as drawn)

 Precompute a table
 Optimal cost of solving just these tiles

 For all possible configurations
 57 Million in this case

 Use A* or IDA*
 State = position of just these tiles (& blank)

27© Daniel S. Weld
Adapted from Richard Korf presentation

[Culberson & Schaeffer 1996]

9 10 11 12
13 14 15

1 2 3 4
5 6 7 8

Using a Pattern Database

 As each state is generated
 Use position of chosen tiles as index into DB

 Use lookup value as heuristic, h(n)

 Admissible?

28© Daniel S. Weld
Adapted from Richard Korf presentation

Combining Multiple Databases

 Can choose another set of tiles
 Precompute multiple tables

 How combine table values?

 E.g. Optimal solutions to Rubik’s cube
 First found w/ IDA* using pattern DB heuristics

 Multiple DBs were used (dif cubie subsets)

 Most problems solved optimally in 1 day

 Compare with 574,000 years for IDDFS

29
© Daniel S. Weld Adapted from Richard Korf presentation

9 10 11 12
13 14 15

1 2 3 4
5 6 7 8

3/22/2018

5

Drawbacks of Standard Pattern DBs

 Since we can only take max
 Diminishing returns on additional DBs

 Would like to be able to add values

30© Daniel S. Weld
Adapted from Richard Korf presentation

Disjoint Pattern DBs

 Partition tiles into disjoint sets
 For each set, precompute table

 E.g. 8 tile DB has 519 million entries

 And 7 tile DB has 58 million

 During search
 Look up heuristic values for each set

 Can add values without overestimating!

 Manhattan distance is a special case of this idea
where each set is a single tile

31
© Daniel S. Weld Adapted from Richard Korf presentation

9 10 11 12
13 14 15

1 2 3 4
5 6 7 8

Performance

 15 Puzzle: 2000x speedup vs Manhattan dist
 IDA* with the two DBs shown previously solves 15

Puzzles optimally in 30 milliseconds

 24 Puzzle: 12 million x speedup vs Manhattan
 IDA* can solve random instances in 2 days.

 Requires 4 DBs as shown
 Each DB has 128 million entries

 Without PDBs: 65,000 years

32
© Daniel S. Weld Adapted from Richard Korf presentation

