CSE 473: Artificial Intelligence
Spring 2018

Heuristics & Pattern
Databases for Search

Steve Tanimoto

With thanks to Dan Weld, Dan Klein, Richard Korf, Stuart Russell, Andrew
Moore, and Luke Zettlemoyer

Recap: Search Problem

= States
= configurations of the world

= Successor function:

» function from states to lists of (state, action, cost)
triples

= Start state
= Goal test

N-Queens as Search?

= Given N x N chess board
= Can you place N queens so they don't fight?

Cool picture from Dan Klein & Pieter Abeel ai.berkeley.edu 3

States are Board Positions

Eﬂxﬁ

Etc...

Search Methods
= Depth first search (DFS)
= Breadth first search (BFS)
= |terative deepening depth-first search (IDS)

= Best first search

= Uniform cost search (UCS) Koy,
» Greedy search St g

n AF Ve,
= |terative Deepening A* (IDA¥)

= Beam search, hill climbing

= Stochastic Search
= Constraint Satisfaction

IDA* for N-Queens?

= Given N x N chess board
= Can you place N queens so they don't fight?

Cool picture from Dan Klein & Pieter Abeel ai.berkeley.edu 6

Best-First Search

= Generalization of breadth-first search
= Fringe = Priority queue of nodes to be explored
= Cost function f(n) applied to each node

Add initial state to priority queue
While queue not empty

Node = head(queue)

If goal?(node) then return node

Add children of node to queue
™~

“expanding the node” ,

Iterative-Deepening A*

= Like iterative-deepening depth-first, but...
= Depth bound modified to be an f-limit

» Start with f-limit = h(start)

* Prune any node if f(node) > f-limit

= Next f-limit = min-cost of any node pruned

IDA* Analysis

= Complete & Optimal (a la A*)
= Space usage o depth of solution
= Each iteration is DFS - no priority queue!

= # nodes expanded relative to A*
= Depends on # unique values of heuristic function
* In 8 puzzle: few values = close to # A* expands

* In eastern-europe travel: each f value is unique
= 1+2+...+n = 0(n?) where n=nodes A* expands
if n is too big for main memory, n? is too long to wait!

= Generates duplicate nodes in cyclic graphs

Beam Search

" |dea
= Best first
= But discard all but N best items on priority queue

= Evaluation

= Complete?
No

* Time Complexity?
O(b™d)

» Space Complexity?
O(b + N)

© Daniel S. Weld 14

Hill Climbing

"Gradient ascent”

=|dea
= Always choose best child; no backtracking

» Beam search with |queue| = 1
=Problems? M\/\/\/\

 Local maxima

* Plateaus

» Diagonal ridges

© Daniel S. Weld

15

Heuristics

It's what makes search actually work

Admissible Heuristics

" f(x) = 9(x) + h(x)
= g: cost so far
= h: underestimate of remaining costs

Where do heuristics come from?

© Daniel S. Weld

18

Relaxed Problems

= Derive admissible heuristic from exact cost of
a solution to a relaxed version of problem
» For blocks world, distance = # move operations

» heuristic = number of misplaced blocks
» What is relaxed problem?

—> —>

SR I

out of place = 2, ftrue distance to goal = 3

* Cost of optimal soln to relaxed problem < cost of

optimal soln for real problem
© Daniel S. Weld

19

What's being relaxed?

Heuristic = Euclidean distance

Straight-line distance

o Buchamst
Arad
Bucha rest
Crawovs
Dobrets
Eforie
Fagaras
Giurgiu
Hirsova
Ia=

Lugoj
MhMehadia
MNeamt
Oradea
Pitesti
Rimnicu Vikes
Sibiu
Timisoara
Urzicem
Vashn

Zerind

s

0
L&
42
lal
17&
151
234
1
141
e

L
193
253
329

195
LR

Traveling Salesman Problem

Obijective: shortest path visiting every city

What can be
Relaxed?

21

Heuristics for eight puzzle

7123 11213
5116/ 5 |4]|5|6
Sl 7
start goal

= \What can we relax?

N1 = number of tiles in wrong place

N2 = 2 distances of tiles from correct loc

22

Importance of Heuristics

h1 = number of tiles in wrong place

12
14
18
24

IDS

10

112
680
6384
47127
364404
3473941

A*(h1)
6
13
20
39
93
227
539
3056
39135

.O\w

23

Importance of Heuristics

N1 = number of tiles in wrong place

N2 = 2 distances of tiles from correct loc

D IDS A*(h1) A*(h2)
2 10 6 6
4 112 13 12
6 680 20 18
8 6384 39 25
10 47127 93 39
12 364404 227 73
14 3473941 539 113
18 3056 363
24 39135 1641

Decrease effective branching factor

.O\w

Need More Power!

Performance of Manhattan Distance Heuristic

= 8 Puzzle < 1 second
= 15 Puzzle 1 minute
= 24 Puzzle 65000 years

Need even better heuristics!

© Daniel S. Weld

Adapted from Richard Korf presentation

25

Subgoal Interactions

= Manhattan distance assumes
» Each tile can be moved independently of others

= Underestimates because
= Doesn’t consider interactions between tiles

—
N
W

© Daniel S. Weld 26

Adapted from Richard Korf presentation

Pattern Databases

[Culberson & Schaeffer 1996]

. . 112(3|4
= Pick any subset of tiles 51 7
“Eg., 3,7, 11,12, 13, 14, 15 nE
= (or as drawn) .

= Precompute a table
= Optimal cost of solving just these tiles

» For all possible configurations
= 57 Million in this case

= Use A* or IDA*

» State = position of just these tiles (& blank)

© Daniel S. Weld 27

Adapted from Richard Korf presentation

Using a Pattern Database
= As each state is generated

= Use position of chosen tiles as index into DB
» Use lookup value as heuristic, h(n)

= Admissible?

© Daniel S. Weld

Adapted from Richard Korf presentation

28

Combining Multiple Databases

_ 1123 |4

= Can choose another set of tiles | sz 17713
* Precompute multiple tables 9 l10ll11l12

= How combine table values? 13]14 15 |

= E.g. Optimal solutions to Rubik’s cube
» First found w/ IDA* using pattern DB heuristics
= Multiple DBs were used (dif cubie subsets)

* Most problems solved optimally in 1 day
= Compare with 674,000 years for IDDFS

© Daniel S. Weld Adapted from Richard Korf presentation

Drawbacks of Standard Pattern DBs

= Since we can only take max
* Diminishing returns on additional DBs

= \Would like to be able to add values

© Daniel S. Weld

Adapted from Richard Korf presentation

30

Disjoint Pattern DBs

1123 |4
. . . L 516 |7 |8

= Partition tiles into disjoint sets
9110|1112

» For each set, precompute table

= E.g. 8 tile DB has 519 million entries
= And 7 tile DB has 58 million
= During search
» Look up heuristic values for each set
» Can add values without overestimating!

» Manhattan distance is a special case of this idea

where each set is a single tile

© Daniel S. Weld Adapted from Richard Korf presentation 31

Performance

= 15 Puzzle: 2000x speedup vs Manhattan dist

* IDA* with the two DBs shown previously solves 15
Puzzles optimally in 30 milliseconds

= 24 Puzzle: 12 million x speedup vs Manhattan
» IDA* can solve random instances in 2 days.
» Requires 4 DBs as shown

= Each DB has 128 million entries
» Without PDBs: 65,000 years

© Daniel S. Weld Adapted from Richard Korf presentation

32

