CSE 473: Artificial Intelligence

Spring 2018

Heuristic Search and A* Algorithms

Steve Tanimoto

With slides from:

Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Today

A* Search

Heuristic Design

Graph search

Recap: Search

Search problem:

- States (configurations of the world)
- Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search Algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*†

Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978 Revised 28 August 1978

For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \leq (5n+5)/3$, and that $f(n) \geq 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \leq g(n) \leq 2n + 3$.

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure initialize the search tree using the initial state of problem loop do

if there are no candidates for expansion then return failure choose a leaf node for expansion according to strategy

if the node contains a goal state then return the corresponding solution else expand the node and add the resulting nodes to the search tree end

Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

What is a *Heuristic*?

- An estimate of how close a state is to a goal
- Designed for a particular search problem

Examples: Manhattan distance: 10+5 = 15

Euclidean distance: 11.2

Example: Heuristic Function

Straight-line distance to Bucharest Arad 366 **Bucharest** 0 Craiova 160 Dobreta 242 Eforie 161 **Fagaras** 178 Giurgiu 77 Hirsova 151 Lasi 226 Lugoi 244 Mehadia 241 Neamt 234 Oradea 380 Pitesti 98 Rimnicu Vilcea 193 Sibiu 253 Timisoara 329 Urziceni 80 Vaslui Zerind

Greedy Search

Best First (Greedy)

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state

- Best-first takes you straight to the (wrong) goal
- Worst-case: like a badlyguided DFS

What can go wrong?

A* Search

Combining UCS and Greedy

Uniform-cost orders by path cost, or backward cost g(n)

Greedy orders by goal proximity, or forward cost h(n)

A* Search orders by the sum: f(n) = g(n) + h(n)

Example: Teg Grenager

When should A* terminate?

Should we stop when we enqueue a goal?

No: only stop when we dequeue a goal

Is A* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good path cost
- We need estimates to be less than or equal to actual costs!

Admissible Heuristics

A heuristic h is admissible (optimistic) if:

$$0 \le h(n) \le h^*(n)$$

where $h^*(n)$ is the true cost to a nearest goal

• Examples:

 Coming up with admissible heuristics is most of what's involved in using A* in practice.

Assume:

- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:

A will exit the fringe before B

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)

$$f(n) = g(n) + h(n)$$
 Definition of f-cost $f(n) \le g(A)$ Admissibility of h $g(A) = f(A)$ h = 0 at a goal

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)

B is suboptimal

Proof:

- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 - 1. f(n) is less or equal to f(A)
 - 2. f(A) is less than f(B)
 - 3. *n* expands before B
- All ancestors of A expand before B
- A expands before B
- A* search is optimal

$$f(n) \le f(A) < f(B)$$

UCS vs A* Contours

 Uniform-cost expanded in all directions

 A* expands mainly toward the goal, but hedges its bets to ensure optimality

Which Algorithm?

Uniform cost search (UCS):

Which Algorithm?

A*, Manhattan Heuristic:

Which Algorithm?

Best First / Greedy, Manhattan Heuristic:

Creating Admissible Heuristics

- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available

Inadmissible heuristics are often useful too

Creating Heuristics

8-puzzle:

Start State

Goal State

- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I

Heuristic: Number of tiles misplaced

Is it admissible?

7	2	4
5		6
8	3	1

Start State

	1	2
3	4	5
6	7	8

Goal State

	Average nodes expanded when optimal path has length		
	4 steps	8 steps	12 steps
UCS	112	6,300	3.6 x 10 ⁶
TILES	13	39	227

8 Puzzle II

- What if we had an easier 8puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- h(start) = 3 + 1 + 2 + ...

7	2	4
5		6
8	3	1

Start State

	1	2
3	4	5
6	7	8

Goal State

=	1	8

Average nodes expanded when optimal path has length...

Admissible?

	4 Steps	o steps	12 steps
TILES	13	39	227
MANHATTAN	12	25	73

8 Puzzle III

- How about using the actual cost as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?

- What's wrong with it?
- With A*: a trade-off between quality of estimate and work per node!

Trivial Heuristics, Dominance

Dominance: h_a ≥ h_c if

$$\forall n: h_a(n) \geq h_c(n)$$

- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible

$$h(n) = max(h_a(n), h_b(n))$$

- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Tree Search: Extra Work!

Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

 In BFS, for example, we shouldn't bother expanding some nodes (which, and why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Hint: in python, store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong

State space graph

A S C h=1 h=2В G

Search tree

Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
 - Admissibility: heuristic cost ≤ actual cost to goal
 h(A) ≤ actual cost from A to G
 - Consistency: heuristic "arc" cost ≤ actual cost for each arc

$$h(A) - h(C) \le cost(A to C)$$

- Consequences of consistency:
 - The f value along a path never decreases

$$h(A) \le cost(A to C) + h(C)$$

$$f(A) = g(A) + h(A) \le g(A) + cost(A to C) + h(C) = f(C)$$

A* graph search is optimal

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Nodes are popped with non-decreasing fscores: for all n, n' with n' popped after n : f(n') ≥ f(n)
 - Proof by induction: (1) always pop the lowest fscore from the fringe, (2) all new nodes have larger (or equal) scores, (3) add them to the fringe, (4) repeat!
 - For every state s, nodes that reach s optimally are expanded before nodes that reach s sub-optimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (h = 0)
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (h = 0 is consistent)
- Consistency implies admissibility
- In general, natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

 A* uses both backward costs and (estimates of) forward costs

 A* is optimal with admissible / consistent heuristics

 Heuristic design is key: often use relaxed problems