
3/22/2018

1

CSE 473: Artificial Intelligence
Spring 2018

Problem Spaces & Search

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Outline

 Search Problems

 Uninformed Search Methods
 Depth-First Search
 Breadth-First Search
 Uniform-Cost Search

 Heuristic Search Methods
 Best-First, Greedy Search
 A*

Agent vs. Environment

 An agent is an entity that
perceives and acts.

 A rational agent selects
actions that maximize its
utility function.

 Characteristics of the
percepts, environment,
and action space dictate
techniques for selecting
rational actions.

Agent

Sensors

?

Actuators

E
n

v
iro

n
m

e
n

t

Percepts

Actions

Types of Agents

 Reflex

 Goal oriented

 Utility-based

4

Goal Based Agents

 Plan ahead
 Ask “what if”

 Decisions based on
(hypothesized)
consequences of actions

 Must have a model of how
the world evolves in
response to actions

 Act on how the world
WOULD BE

Types of Environments

 Fully observable vs. partially observable

 Single agent vs. multiagent

 Deterministic vs. stochastic

 Episodic vs. sequential

 Discrete vs. continuous

3/22/2018

2

Search thru a

 Set of states

 Operators [and costs]

 Start state

 Goal state [test]

• Path: start a state satisfying goal test

[May require shortest path]

[Sometimes just need a state that passes test]

• Input:

• Output:

Problem Space (aka State Space) Problem Space (aka State Space)
Example: Traveling in Romania

 State space:
 Cities

 Successor function:
 Roads: Go to adjacent city

with cost = distance

 Start state:
 Arad

 Goal test:
 Is state == Bucharest?

 Solution?

Example: Simplified Pac-Man

 Input:
 A state space

 A successor function

 A start state

 A goal test

 Output:

“N”, 1.0

“E”, 1.0

State Space Sizes?

 Search Problem:
Eat all of the food

 Pacman positions:
10 x 12 = 120

 Pacman facing:
up, down, left, right

 Food configurations: 230

 Ghost1 positions: 12

 Ghost 2 positions: 11

10 x 12 = 120

up, down, left, right

230

12

11

120 x 4 x 230 x 12 x 11 = 6.8 x 1013

State Space Graphs

 State space graph:

 Each node is a state

 The successor function is
represented by arcs

 Edges may be labeled with
costs

 In a search graph, each state
occurs only once!

 We can rarely build this graph
in memory (so we don’t)

S

G

d

b

p
q

c

e

h

a

f

r

Ridiculously tiny search graph
for a tiny search problem

Search Trees

 A search tree:
 Start state at the root node

 Children correspond to successors

 Nodes contain states, correspond to PLANS to those states

 Edges are labeled with actions and costs

 For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This is now / start

Possible futures

3/22/2018

3

State Space Graphs vs. Search Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

We construct
both on

demand – and
we construct

as little as
possible.

Each NODE in
in the search

tree is an
entire PATH in

the state
space graph.

Search TreeState Space
Graph

State Space Graphs vs. Search Trees

S G

b

a

Consider this 4-state
graph:

Important: Lots of repeated structure in the search tree!

How big is its search tree
(from S)?

Tree Search Search Example: Romania

Searching with a Search Tree

 Search:
 Expand out potential plans (tree nodes)
 Maintain a fringe of partial plans under

consideration
 Try to expand as few tree nodes as possible

General Tree Search

 Important ideas:
 Fringe
 Expansion
 Exploration strategy

 Main question: which fringe nodes to explore?

3/22/2018

4

Tree Search Example

S

G

d

b

p q

c

e

h

a

f

r

Depth-First Search

Depth-First Search

Strategy: expand a
deepest node first

Implementation: Fringe is
a LIFO stack S

G

d

b

p q

c

e

h

a

f

r

Depth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp

h
fd

b

a
c

e

r

Strategy: expand a
deepest node first

Implementation: Fringe is
a LIFO stack

Search Algorithm Properties Search Algorithm Properties

 Complete: Guaranteed to find a solution if one exists?
 Optimal: Guaranteed to find the least cost path?
 Time complexity?
 Space complexity?

 Cartoon of search tree:
 b is the branching factor
 m is the maximum depth
 solutions at various depths

 Number of nodes in entire tree?
 1 + b + b2 + …. bm = O(bm)

…
b

1 node

b nodes

b2 nodes

bm

nodes

m tiers

3/22/2018

5

Depth-First Search (DFS) Properties

…
b

1 node

b nodes

b2 nodes

bm nodes

m tiers

 What nodes does DFS expand?
 Some left prefix of the tree.
 Could process the whole tree!
 If m is finite, takes time O(bm)

 How much space does the fringe take?
 Only has siblings on path to root, so O(bm)

 Is it complete?
 m could be infinite, so only if we prevent cycles

 Is it optimal?
 No, it finds the “leftmost” solution, regardless of

depth or cost

Breadth-First Search

Breadth-First Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

r

Search

Tiers

Strategy: expand a
shallowest node first

Implementation: Fringe
is a FIFO queue

Breadth-First Search (BFS) Properties

 What nodes does BFS expand?
 Processes all nodes above shallowest solution
 Let depth of shallowest solution be d
 Search takes time O(bd)

 How much space does the fringe take?
 Has roughly the last tier, so O(bd)

 Is it complete?
 d must be finite if a solution exists, so yes!

 Is it optimal?
 Only if costs are all 1 (more on costs later)

…
b

1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

DFS vs BFS

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

N unless
finite

N O(bm) O(bm)

Y Y O(bd) O(bd)

Memory a Limitation?

 Suppose:
• 4 GHz CPU
• 32 GB main memory
• 100 instructions / expansion
• 5 bytes / node

• 40 M expansions / sec
• Memory filled in 160 sec … 3 min

3/22/2018

6

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

ID

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y Y O(bd) O(bd)

…
b

BFS vs. Iterative Deepening

 For b = 10, d = 5:

 BFS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 =
111,111

 IDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 =
123,456

 Overhead = (123,456 - 111,111) / 111,111 = 11%

 Memory BFS: 100,000; IDS: 50 32

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Uniform Cost Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Expand
cheapest
node first:

Fringe is a
priority
queue

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority
queue (priority:
cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164
11

5

713

8

1011

17 11

0

6

3
9

1

1

2

8

8 2

15

1

2

Cost
contours

2

…

Uniform Cost Search (UCS)
Properties

 What nodes does UCS expand?

 Processes all nodes with cost less than cheapest solution!

 If that solution costs C* and arcs cost at least ε , then the “effective
depth” is roughly C*/ε

 Takes time O(bC*/ε) (exponential in effective depth)

 How much space does the fringe take?

 Has roughly the last tier, so O(bC*/ε)

 Is it complete?

 Assuming best solution has a finite cost and minimum arc cost is
positive, yes!

 Is it optimal?

 Yes!

b

C*/ε
“tiers” C ≤ 3

C ≤ 2

C ≤ 1

3/22/2018

7

Uniform Cost Search

 Strategy: expand lowest
path cost

 The good: UCS is
complete and optimal!

 The bad:
 Explores options in every

“direction”
 No information about goal

location Start Goal

…

c 3

c 2

c 1

Uniform Cost Search
Algorithm Complete Optimal Time Space

DFS w/ Path
Checking

BFS

UCS

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y* Y O(bC*/ε) O(bC*/ε)

…
b

C*/ε tiers

Uniform Cost: Pac-Man

 Cost of 1 for each action

 Explores all of the states, but one

The One Queue

 All these search algorithms
are the same except for
fringe strategies
 Conceptually, all fringes are

priority queues (i.e. collections
of nodes with attached
priorities)

 Practically, for DFS and BFS,
you can avoid the log(n)
overhead from an actual
priority queue, by using stacks
and queues

 Can even code one
implementation that takes a
variable queuing object

To Do:

 Look at the course website:
 http://http://courses.cs.washington.edu/courses/cse473/18sp/

 Do the readings (Ch 3)

 Do Project 0 if new to Python

 Start Project 1.

