CSE 473: Artificial Intelligence Spring 2018

Problem Spaces & Search

Steve Tanimoto

With slides from : Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Search thru a Problem Space (aka State Space)

- Input:
 - Set of states
 - Operators [and costs]
 - Start state
 - Goal state [test]

• Output:

 Path: start → a state satisfying goal test [May require shortest path]
[Sometimes just need a state that passes test]

		Iterat	ive D)eeper	ning
Iterativ	e deepenir	ig uses DFS	as a subrou	tine:	d R
	a DFS whi gth 1 or les	ch only searc s.	ches for pat	ns of	
	1" failed, do ength 2 or l	a DFS whic ess.	h only searc	hes paths	
	2" failed, do ength 3 or l	a DFS whic ess.	h only searc	hes paths	/
		6	and so on.		\
Algorith	nm	Complete	Optimal	Time	Space
DFS	w/ Path Checking	Y	N	$O(b^m)$	O(bm)
BFS		Y	Y	$O(b^d)$	$O(b^d)$
		Y	Y	$O(b^d)$	O(bd)

Algorithm		Complete	Optimal	Time	Space
FS	w/ Path Checking	Y	N	$O(b^m)$	O(bm)
BFS		Y	Y	$O(b^d)$	$O(b^d)$
UCS		Y*	Y	$O(b^{C^{*/\varepsilon}})$	$O(b^{C^{*/\varepsilon}})$
	C*/ɛ	tiers ≺			

To Do:

- Look at the course website:
- http://http://courses.cs.washington.edu/courses/cse473/18sp/
- Do the readings (Ch 3)
- Do Project 0 if new to Python
- Start Project 1.