CSE 473, Sprint 2018 – Project 3 Paul G. Allen School of Computer Science and Engineering

Name:

Project 3 - Question 9

This non-programming problem is part of Project 3. Please add your answers to this document and submit your completed document along with your solution to the Pac-Man project.

The following problems take place in various scenarios of a 1D gridworld MDP.

In all cases double-rectangle states are exit states. From an exit state, the only action available is Exit, which results in the listed immediate reward and ends the game (by moving into a terminal state; not shown).

From non-exit states, the agent can choose either Left (L) or Right (R) actions, which move the agent in the corresponding direction. There are no living rewards; the only non-zero rewards come from exiting the grid. Throughout this problem, assume that value iteration begins with initial values VO(s) = 0 for all states.

Consider the following scenario:

CSE 473, Sprint 2018 – Project 3 Paul G. Allen School of Computer Science and Engineering

Let the discount factor be γ = 0.75, and let transitions be deterministic. Fill in the missing values for each state following the value iteration algorithm in the following table:

Step t	V _t (A)	V _t (B)	V _t (C)	V _t (D)	V _t (E)
0	0	0	0	0	0
1					
2					
3					
4					

What are the actions for states B, C, and D for each time step, according to the best policy that corresponds to the values at step t?

Time	π _t (B)	$\pi_{t}(C)$	$\pi_{t}(D)$
1			
2			
3			
4			