

Markov Models
- Value of X at a given time is called the state $\begin{aligned} X_{1} & \rightarrow X_{2} \rightarrow\left(X_{3}\right) \\ P\left(X_{1}\right) & P\left(X_{4} \mid X_{t-1}\right) \end{aligned}$ - Parameters: called transition probabilities or dynamics, specify how the state evolves over time (also, initial state probabilities) - Stationarity assumption: transition probabilities the same at all times - Same as MDP transition model, but no choice of action

Joint Distribution of a Markov Model
- Joint distribution: $P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)$ - More generally: $\begin{aligned} P\left(X_{1}, X_{2}, \ldots, X_{T}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right) \\ & =P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right) \end{aligned}$ - Questions to be resolved: - Does this indeed define a joint distribution? - Can every joint distribution be factored this way, or are we making some assumptions about the joint distribution by using this factorization?

Chain Rule and Markov Models
$X_{1} \rightarrow\left(X_{2}\right) \rightarrow X_{3} \rightarrow X_{4}$

Chain Rule and Markov Models
 $$
\left.\left.x_{1} \rightarrow x_{2} \rightarrow x_{3}\right) \rightarrow x_{1}\right) \cdots
$$

- From the chain rule, every joint distribution over $X_{1}, X_{2}, \ldots, X_{T}$ can be written as:

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{1}, X_{2}, \ldots, X_{t-1}\right)
$$

- Assuming that for all t :

$$
X_{t} \Perp X_{1}, \ldots, X_{t-2} \mid X_{t-1}
$$

simplifies to the expression posited on the earlier slide:

$$
P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)
$$

Implied Conditional Independencies
- We assumed: $\quad X_{3} \Perp X_{1} \mid X_{2} \quad$ and $\quad X_{4} \Perp X_{1}, X_{2} \mid X_{3}$ - Do we also have $\quad X_{1} \Perp X_{3}, X_{4} \mid X_{2} \quad$? - Yes! - Proof: $\begin{aligned} P\left(X_{1} \mid X_{2}, X_{3}, X_{4}\right) & =\frac{P\left(X_{1}, X_{2}, X_{3}, X_{4}\right)}{P\left(X_{2}, X_{3}, X_{4}\right)} \\ & =\frac{P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)}{\sum_{x_{1}} P\left(x_{1}\right) P\left(X_{2} \mid x_{1}\right) P\left(X_{3} \mid X_{2}\right) P\left(X_{4} \mid X_{3}\right)} \\ & =\frac{P\left(X_{1}, X_{2}\right)}{P\left(X_{2}\right)} \\ & =P\left(X_{1} \mid X_{2}\right) \end{aligned}$

Markov Models Recap

- Explicit assumption for all $t: X_{t} \Perp X_{1}, \ldots, X_{t-2} \mid X_{t-1}$
- Consequence, joint distribution can be written as:
$P\left(X_{1}, X_{2}, \ldots, X_{T}\right)=P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{2}\right) \ldots P\left(X_{T} \mid X_{T-1}\right)$
$=P\left(X_{1}\right) \prod_{t=2}^{T} P\left(X_{t} \mid X_{t-1}\right)$
- Implied conditional independencies:
Past independent of future given the present
i.e., if $t_{1}<t_{2}<t_{3}$ then: $X_{t_{1}} \Perp X_{t_{3}} \mid X_{t_{2}}$
- Additional explicit assumption: $P\left(X_{t} \mid X_{t-1}\right)$ is the same for all t

Example Markov Chain: Weather
- Initial distribution: 1.0 sun
- What is the probability distribution after one step?
$P\left(X_{2}=\operatorname{sun}\right)=\quad$$P\left(X_{2}=\operatorname{sun} \mid X_{1}=\operatorname{sun}\right) P\left(X_{1}=\operatorname{sun}\right)+$ $P\left(X_{2}=\operatorname{sun} \mid X_{1}=\right.$ rain $) P\left(X_{1}=\right.$ rain $)$ $0.9 \cdot 1.0+0.3 \cdot 0.0=0.9$

	Mini-Forward Algorithm
- Question: What's $\mathrm{P}(\mathrm{X})$ on some day t?	
$\left(X_{1} \rightarrow \rightarrow X_{2} \rightarrow X_{3} \rightarrow\left(X_{4} \rightarrow \rightarrow\right.\right.$	

Example Run of Mini-Forward Algorithm				
- From initial observation of sun				
- From initial observation of rain				
- From yet another initial distribution $\mathrm{P}\left(\mathrm{X}_{1}\right)$:				
$\left\langle\begin{array}{c} p \\ 1-p \\ \mathbf{P}\left(X_{1}\right) \end{array}\right\rangle \ldots \quad \Longleftrightarrow\left\langle\begin{array}{c} 0.75 \\ 0.25 \\ \mathrm{P}\left(X_{\infty}\right) \end{array}\right\rangle$				

Example: Stationary Distributions

- Question: What's $P(X)$ at time $t=$ infinity?

$$
X_{1} \rightarrow X_{2} \rightarrow X_{3} \rightarrow X_{4} \rightarrow
$$

$P_{\infty}($ sun $)=P($ sun \mid sun $) P_{\infty}($ sun $)+P($ sun \mid rain $) P_{\infty}($ rain $)$
$P_{\infty}($ rain $)=P($ rain \mid sun $) P_{\infty}($ sun $)+P($ rain \mid rain $) P_{\infty}($ rain $)$
$P_{\infty}($ sun $)=0.9 P_{\infty}($ sun $)+0.3 P_{\infty}($ rain $)$
$P_{\infty}($ rain $)=0.1 P_{\infty}($ sun $)+0.7 P_{\infty}($ rain $)$
$P_{\infty}($ sun $)=3 P_{\infty}($ rain $)$
$P_{\infty}($ rain $)=1 / 3 P_{\infty}($ sun $)$
Also: $\quad P_{\infty}($ sun $)+P_{\infty}($ rain $)=1$

$P_{\infty}($ sun $)=3 / 4$
$P_{\infty}($ rain $)=1 / 4$

$\mathbf{X}_{\mathrm{t}-1}$	\mathbf{X}_{t}	$\mathbf{P}\left(\mathbf{X}_{\mathrm{t}} \mid \mathbf{X}_{\mathrm{t}-1}\right)$
sun	sun	0.9
sun	rain	0.1
rain	sun	0.3
rain	rain	0.7

Application of Stationary Distribution: Web Link Analysis

- PageRank over a web graph
- Each web page is a state
- Initial distribution: uniform over pages
- Transitions:
- With prob. c, uniform jump to a
random page (dotted lines, not all shown)
- With prob. -c. follow atlink (sobid 1-c, follow a random

- Stationary distribution
- Will spend more time on highly reachable pages
- E.g. many ways to get to the Acrobat Reader download page
- Somewhat robust to link spam
- Google 1.0 returned the set of pages containing all your keywords in decreasing rank, now all search engines use link analysis along with many other factors (rank actually getting less important over time)

