
1

CSE 473: Artificial Intelligence
Winter 2017

Constraint Satisfaction Problems - Part 2

Steve Tanimoto

With slides from :
Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

1

Improving Backtracking

 General-purpose ideas give huge gains in speed

 Ordering:
 Which variable should be assigned next?
 In what order should its values be tried?

 Filtering: Can we detect inevitable failure early?

 Structure: Can we exploit the problem structure?

2

Filtering

4

 Filtering: Keep track of domains for unassigned variables and cross off bad options
 Forward checking: Cross off values that violate a constraint when added to the existing

assignment

Filtering: Forward Checking

WA
SA

NT Q
NSW

V

[Demo: coloring -- forward checking]
5

Video of Demo Coloring – Backtracking with Forward Checking

6

Filtering: Constraint Propagation

 Forward checking only propagates information from assigned to unassigned
 It doesn't catch when two unassigned variables have no consistent assignment:

 NT and SA cannot both be blue!
 Why didn’t we detect this yet?
 Constraint propagation: reason from constraint to constraint

WA SA

NT Q

NSW

V

7

2

Consistency of a Single Arc

 An arc X  Y is consistent iff for every x in the tail there is some y in the head which
could be assigned without violating a constraint

 Forward checking: Enforcing consistency of arcs pointing to each new assignment

Delete from the tail!

WA SA

NT Q

NSW

V

8

Arc Consistency of an Entire CSP
 A simple form of propagation makes sure all arcs are consistent:

 Important: If X loses a value, neighbors of X need to be rechecked!
 Arc consistency detects failure earlier than forward checking
 Can be run as a preprocessor or after each assignment
 What’s the downside of enforcing arc consistency?

Remember: Delete
from the tail!

WA SA

NT Q

NSW

V

9

AC-3 algorithm for Arc Consistency

 Runtime: O(n2d3), can be reduced to O(n2d2)
 … but detecting all possible future problems is NP-hard – why?

[Demo: CSP applet (made available by aispace.org) -- n-queens]
10

Limitations of Arc Consistency

 After enforcing arc
consistency:
 Can have one solution left
 Can have multiple solutions left
 Can have no solutions left (and

not know it)

 Arc consistency still runs
inside a backtracking search!

What went
wrong here?

[Demo: coloring -- arc consistency]
[Demo: coloring -- forward checking]11

K-Consistency

12

K-Consistency
 Increasing degrees of consistency

 1-Consistency (Node Consistency): Each single node’s domain has a value
which meets that node’s unary constraints

 2-Consistency (Arc Consistency): For each pair of nodes, any consistent
assignment to one can be extended to the other

 K-Consistency: For each k nodes, any consistent assignment to k-1 can be
extended to the kth node.

 Higher k more expensive to compute

 (You need to know the algorithm for k=2 case: arc consistency)

13

3

Strong K-Consistency

 Strong k-consistency: also k-1, k-2, … 1 consistent

 Claim: strong n-consistency means we can solve without backtracking!

 Why?
 Choose any assignment to any variable
 Choose a new variable
 By 2-consistency, there is a choice consistent with the first
 Choose a new variable
 By 3-consistency, there is a choice consistent with the first 2
 …

 Lots of middle ground between arc consistency and n-consistency! (e.g. k=3, called
path consistency)

14

Video of Demo Arc Consistency – CSP Applet – n Queens

15

Video of Demo Coloring – Backtracking with Forward Checking –
Complex Graph

16

Video of Demo Coloring – Backtracking with Arc Consistency –
Complex Graph

17

Ordering

18

Ordering: Minimum Remaining Values

 Variable Ordering: Minimum remaining values (MRV):
 Choose the variable with the fewest legal left values in its domain

 Why min rather than max?
 Also called “most constrained variable”
 “Fail-fast” ordering

19

4

 Tie-breaker among MRV variables
 What is the very first state to color? (All have 3 values remaining.)

 Maximum degree heuristic:
 Choose the variable participating in the most constraints on remaining

variables

 Why most rather than fewest constraints?

Ordering: Maximum Degree

20

Ordering: Least Constraining Value

 Value Ordering: Least Constraining Value
 Given a choice of variable, choose the least

constraining value
 I.e., the one that rules out the fewest values in

the remaining variables
 Note that it may take some computation to

determine this! (E.g., rerunning filtering)

 Why least rather than most?

 Combining these ordering ideas makes
1000 queens feasible

21

Rationale for MRV, MD, LCV

 We want to enter the most promising branch, but we also want
to detect failure quickly

 MRV+MD:
 Choose the variable that is most likely to cause failure
 It must be assigned at some point, so if it is doomed to fail, better to

find out soon

 LCV:
 We hope our early value choices do not doom us to failure
 Choose the value that is most likely to succeed

22

Structure

23

Problem Structure

 Extreme case: independent subproblems
 Example: Tasmania and mainland do not interact

 Independent subproblems are identifiable as
connected components of constraint graph

 Suppose a graph of n variables can be broken into
subproblems of only c variables:
 Worst-case solution cost is O((n/c)(dc)), linear in n
 E.g., n = 80, d = 2, c =20
 280 = 4 billion years at 10 million nodes/sec
 (4)(220) = 0.4 seconds at 10 million nodes/sec

24

Tree-Structured CSPs

 Theorem: if the constraint graph has no loops, the CSP can be solved in O(n d2) time
 Compare to general CSPs, where worst-case time is O(dn)

 This property also applies to probabilistic reasoning (later): an example of the relation
between syntactic restrictions and the complexity of reasoning

25

5

Tree-Structured CSPs

 Algorithm for tree-structured CSPs:
 Order: Choose a root variable, order variables so that parents precede children

 Remove backward: For i = n : 2, apply RemoveInconsistent(Parent(Xi),Xi)
 Assign forward: For i = 1 : n, assign Xi consistently with Parent(Xi)

 Runtime: O(n d2) (why?)

27

Tree-Structured CSPs

 Claim 1: After backward pass, all root-to-leaf arcs are consistent
 Proof: Each XY was made consistent at one point and Y’s domain could not have

been reduced thereafter (because Y’s children were processed before Y)

 Claim 2: If root-to-leaf arcs are consistent, forward assignment will not backtrack
 Proof: Induction on position

 Why doesn’t this algorithm work with cycles in the constraint graph?

 Note: we’ll see this basic idea again with Bayes’ nets 28

Improving Structure

29

Nearly Tree-Structured CSPs

 Conditioning: instantiate a variable, prune its neighbors' domains

 Cutset conditioning: instantiate (in all ways) a set of variables such that
the remaining constraint graph is a tree

 Cutset size c gives runtime O((dc) (n-c) d2), very fast for small c 30

Cutset Conditioning

SA

SA SA SA

Instantiate the cutset
(all possible ways)

Compute residual CSP
for each assignment

Solve the residual CSPs
(tree structured)

Choose a cutset

31

Cutset Quiz

 Find the smallest cutset for the graph below.

32

6

Local Search for CSPs

34

Iterative Algorithms for CSPs

 Local search methods typically work with “complete” states, i.e., all variables assigned

 To apply to CSPs:
 Take an assignment with unsatisfied constraints
 Operators reassign variable values
 No fringe! Live on the edge.

 Algorithm: While not solved,
 Variable selection: randomly select any conflicted variable
 Value selection: min-conflicts heuristic:

 Choose a value that violates the fewest constraints
 I.e., hill climb with h(n) = total number of violated constraints

35

Example: 4-Queens

 States: 4 queens in 4 columns (44 = 256 states)
 Operators: move queen in column
 Goal test: no attacks
 Evaluation: c(n) = number of attacks

[Demo: n-queens – iterative improvement (L5D1)]
[Demo: coloring – iterative improvement]

36

Performance of Min-Conflicts

 Given random initial state, can solve n-queens in almost constant time for arbitrary
n with high probability (e.g., n = 10,000,000)!

 The same appears to be true for any randomly-generated CSP except in a narrow
range of the ratio

39

Summary: CSPs

 CSPs are a special kind of search problem:
 States are partial assignments
 Goal test defined by constraints

 Basic solution: backtracking search

 Speed-ups:
 Ordering
 Filtering
 Structure

 Iterative min-conflicts is often effective in practice
40

