CSE 473: Artificial Intelligence

Winter 2017

Heuristic Search and A* Algorithms

Steve Tanimoto

With slides from : Dieter Fox, Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer



Recap: Search

Search problem:

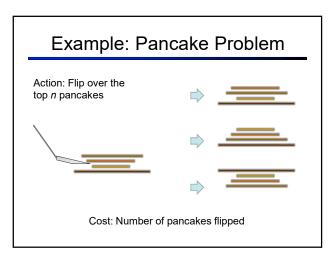
- States (configurations of the world)
- Successor function: a function from states to lists of (state, action, cost) triples; drawn as a graph
- Start state and goal test

Search tree:

- Nodes: represent plans for reaching states
- Plans have costs (sum of action costs)

Search Algorithm:

- Systematically builds a search tree
- Chooses an ordering of the fringe (unexplored nodes)



Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

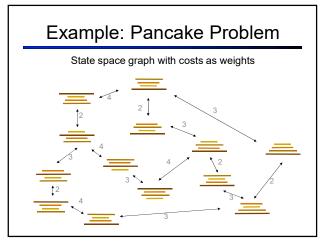
William H. GATES Microsoft, Albuquerque, New Mexico

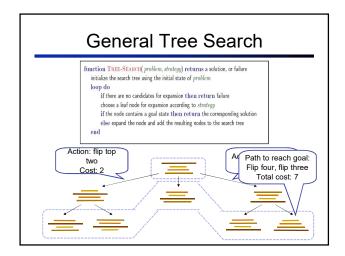
Christos H. PAPADIMITRIOU*†

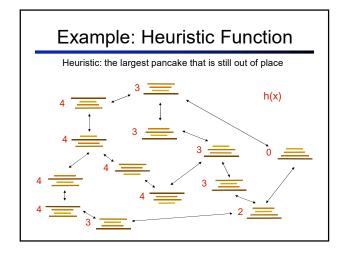
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

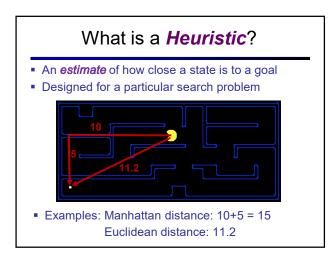
Received 18 January 1978 Revised 28 August 1978

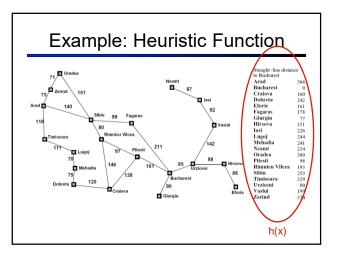
For a permutation σ of the integers from 1 to n, let $f(\sigma)$ be the smallest number of prefix reversals that will transform σ to the identity permutation, and let f(n) be the largest such $f(\sigma)$ for all σ in (the symmetric group) S_n . We show that $f(n) \! \in \! (5n+5)/3$, and that $f(n) \! \geq \! 17n/16$ for n a multiple of 16. If, furthermore, each integer is required to participate in an even number of reversed prefixes, the corresponding function g(n) is shown to obey $3n/2 - 1 \! \leq \! g(n) \! \leq \! 2n + 3$.

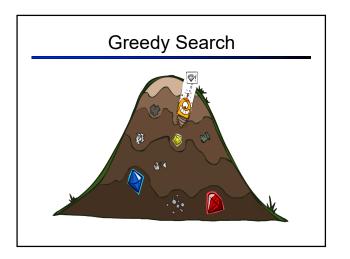


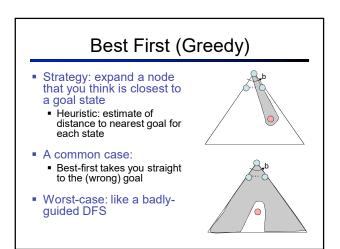


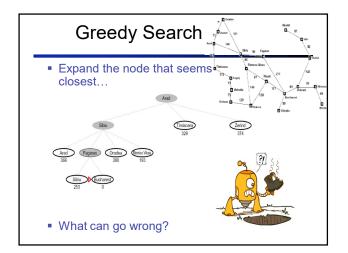


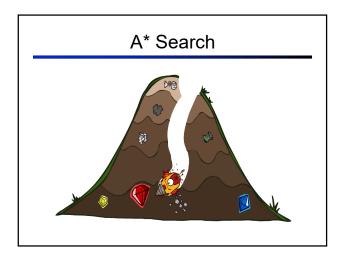


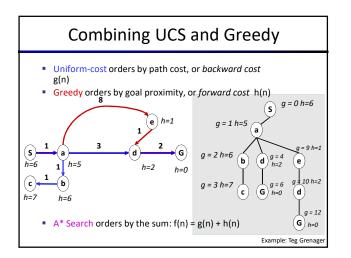


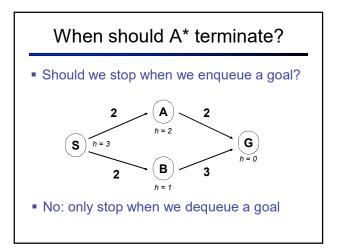


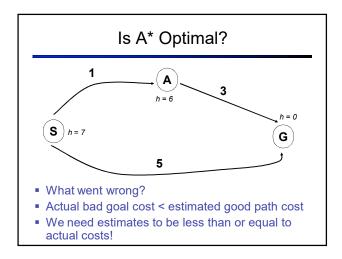


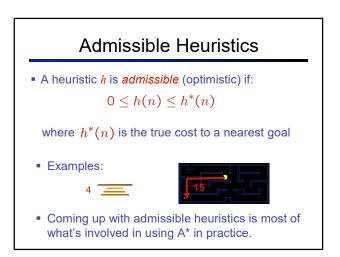


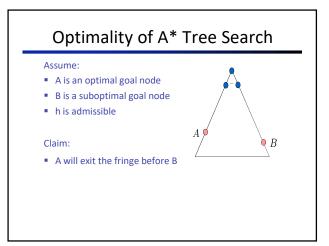


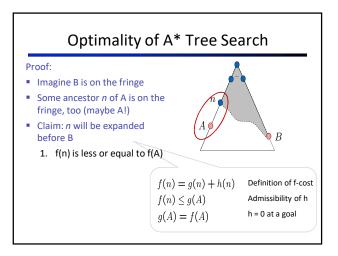


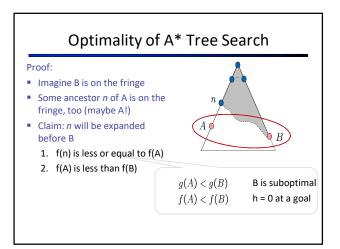


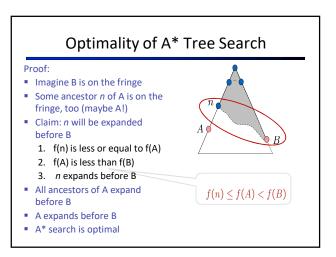


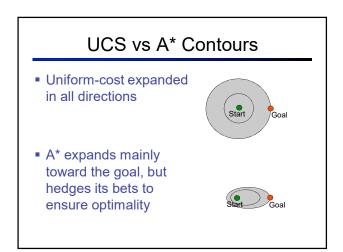


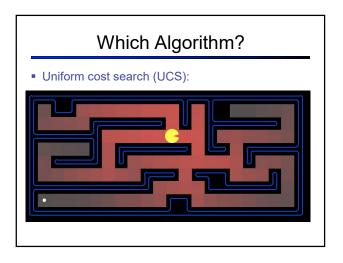


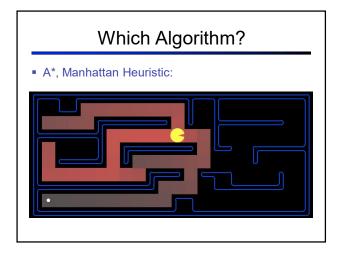


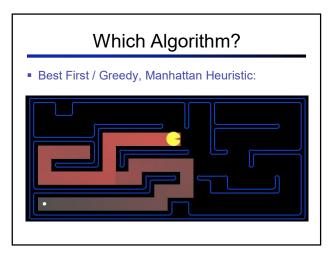


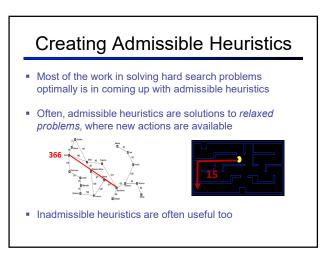


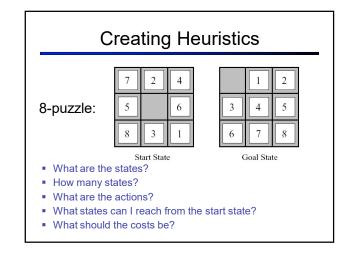


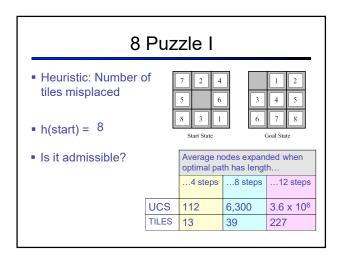


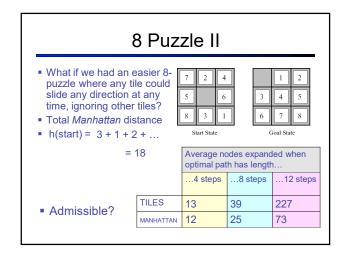












8 Puzzle III

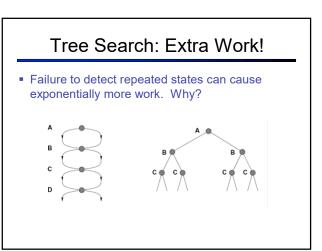
- How about using the *actual cost* as a heuristic?
 - Would it be admissible?
 - Would we save on nodes expanded?
 - What's wrong with it?
- With A*: a trade-off between quality of estimate and work per node!

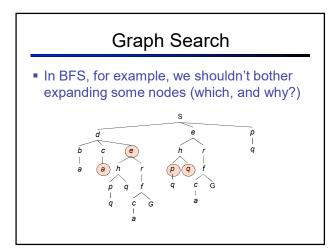
Trivial Heuristics, Dominance• Dominance: $h_a \ge h_c$ if $\forall n : h_a(n) \ge h_c(n)$ • Heuristics form a semi-lattice:• Max of admissible heuristics is admissible $h(n) = max(h_a(n), h_b(n))$ • Trivial heuristics

- Bottom of lattice is the zero heuristic (what does this give us?)
- Top of lattice is the exact heuristic

A* Applications

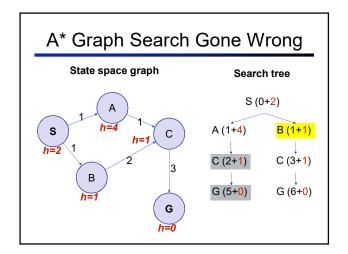
- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

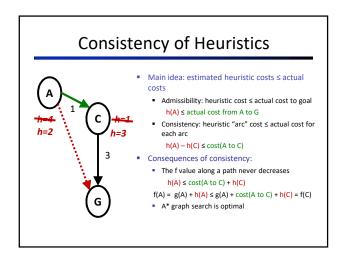


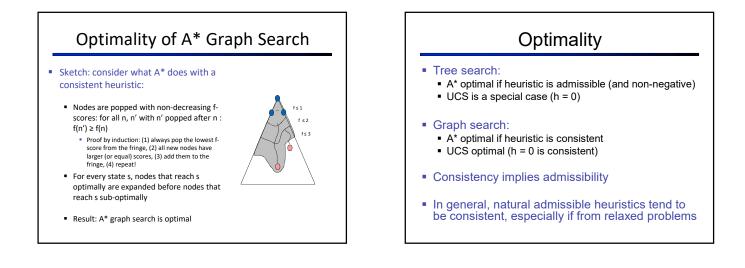


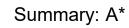
Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Hint: in python, store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?









- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems