CSE 473: Introduction to Artificial Intelligence

Winter 2017

Basic Information

Eligible Students:

Enrollment in this course is limited to those students who are enrolled in the Computer Science and the Computer Engineering degree programs at the University of Washington. Students in other majors, graduate students, and students in exchange programs should take one of the other courses in artificial intelligence offered, such as CSE 415 during Spring 2017.

Course Staff:

Steve Tanimoto
Course Instructor
Office Hours:
10:45 to 11:45 in CSE 624.

Svet Kolev
Teaching Assistant
Office Hours:
Mon. 1:00-2:00 in CSE 021
Thurs. 4:30-5:30 in CSE 218

Melody Su
Teaching Assistant
Office Hours:
3:30-5:20 in EEB 431.

Rob Thompson
Teaching Assistant
Office Hours:
Tues. 12:30-1:20
Wed. 1:30-2:20 in CSE 218.

Calendar: The schedule of lectures and other course events is available in our calendar. You may wish to subscribe to it, in order to see course events listed in your own calendar.


Our primary method of communication will be the Catalyst GoPost forum for this course.

If you truly wish to use old-fashioned email, you may email all instructors at cse473-instr [at] cs.washington.edu.

Class times & locations: Monday, Wednesday, Friday, 2:30-3:20 in EEB 125 (Electrical Engineering Building)

Textbook: Stuart Russell & Peter Norvig, Artificial Intelligence: A Modern Approach, Third Edition (2009)

Pac-Man: The programming projects in this course are based on those from http://ai.berkeley.edu/project_overview.html. This link is provided for reference only as our projects may differ.

Overflow Add Request

If you are not yet enrolled in the course, you are an eligible student (see above), and you wish to be enrolled in the class, come to class on Day 1 (and note the code that will be given out there), and then fill out the online overload request form. This does not guarantee enrollment, but we will do our best.


Your grade will be 40% homework assignments, 20% midterm, 30% final exam, and 10% class participation.

Assignments may be handed in up to five days late, at a penalty of 10% of the maximum grade per day.

Assignments will be done individually unless otherwise specified. You may discuss the subject matter with other students in the class, but all final answers must be your own work. You are expected to maintain the utmost level of academic integrity in the course.

The bulk of the participation score will come from the worksheets we do in class. Each worksheet is worth 1 point, when an honest attempt at completing the activity is turned in by the end of the class in which it is given out. Worksheet credits cannot be made up, even for illness or out-of-town trips; however, you may miss up to 3 worksheets with no effect on your grade. This system incentivizes contributions in-person to our class community, improving the learning environment. Catalyst Gradebook permits instructors to compute totals that automatically drop the three lowest-scoring items, and the plan is to exploit that capability when participation scores are figured.

Homework, including programming project files, should be turned in to this Catalyst DropBox.

Academic Honesty

It is encouraged that you discuss your ideas with each other and consult online sources to better understand the material. However, your code must be written entirely by yourself. As a rule, you should never look at or run anyone else's code for the assignment, whether the code was written by someone currently in the class, or someone who took it previously, even at another university. Reading pseudocode for generic algorithms (like alpha-beta pruning or A* search) is perfectly OK. If you use a source very closely, for example, converting a pseudocode implementation of A* to Python, academic integrity demands that you cite the source (in a comment). You will not be penalized for this; on the contrary, the citation may help us to understand why your implementation is so similar to someone else's, in case they use and cite the same source. We do compare everyone's projects to each other and to past submissions to detect logical redundancy. When two assignments are too similar to have occurred by chance, we have to look into whether something improper occurred. These investigations are not fun for anyone involved. If you have questions, please ask!

Feedback to the Course Staff

You may submit feedback (optionally anonymous) at any time on any aspect of the course here: Catalyst UMail feedback form

Homework Assignments

Project 0 due Jan. 11 @ 11:59 PM (lead TA: Rob)

Project 1: Search due Jan. 23 @ 11:59 PM (lead TA: Melody)

Project 2: Multi-Agent Search due Feb. 3 @ 11:59 PM (lead TA: Svet)

Project 3: Reinforcement Learning due Feb. 15 @ 11:59 PM (lead TA: Melody)

Project 4: Ghostbusters due March 3 @ 11:59 PM (lead TA: Svet)

Competition (Optional) due March 6 @ 11:59 PM (coordinating TA: Svet)

Project 5: Pattern Classification (questions 1, 2, and 4), due March 10 @ 11:59 PM (lead TA: Rob). This project is "semi-optional" in that it's only worth 6 points.