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Mode 1: Training example
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Mode 1: Learned behavior
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Mode 1: Learned behavior

Mode 1: Learned cost map

Mode 2: Training example
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Mode 2: Learned behavior




Mode 2: Learned behavior

4/30/17

Mode 2: Learned cost map
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Learned Cost Function Examples

Ratliff, Bradley, Chesnutt,
Bagnell 06

Learning Locomotion Phase Il
Matt Zucker - The Robotics Institute

Zucker, Ratliff, Stolle,
Chesnutt, Bagnell,
Atkeson, Kuffner 09
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Pedestrian Trajectory Prediction
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Pedestrian Trajectory Prediction

Pedestrian Trajectory Prediction

(Using O(1) Bayes’
Rule for Goals)

Staying out of People’s Path

Pedestrian Trajectory Prediction

Learning Manipulation Preferences

¢ Input: Human demonstrations of preferred behavior
(e.g., moving a cup of water upright without spilling)

* Output: Learned cost function that results in trajectories
satisfying user preferences
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Learned cost
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Learned cost
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Laptop task: Demonstration

( Not part of training set)
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Laptop task: LTO + Discrete graph path




That’s all for Reinforcement Learning!
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Data (experiences with Reinforcement Learning
environment) Agent

= Very tough problem: How to perform any task well in an
unknown, noisy environment!

= Traditionally used mostly for robotics, but becoming more widely
used

= Lots of open research areas:
= How to best balance exploration and exploitation?

= How to deal with cases where we don’t know a good state/feature
representation?

= How to best bootstrap the learning process from demonstrations?

Conclusion

= We're done with Part I: Search
and Planning!

= We've seen how Al methods can
solve problems in:
= Search
= Constraint Satisfaction Problems
= Games
= Markov Decision Problems
= Reinforcement Learning

Learning!




