CS 473: Intro to Artificial Intelligence Dieter Fox

Inverse Optimal Control (Inverse Reinforcement Learning)

Most slides by
Drew Bagnell / Brian Ziebart
Carnegie Mellon University

Learning Manipulation Preferences

- Input: Human demonstrations of preferred behavior (e.g., moving a cup of water upright without spilling)
- Output: Learned cost function that results in trajectories satisfying user preferences

30

That's all for Reinforcement Learning!

Reinforcement Learning Agent

- Very tough problem: How to perform any task well in an unknown, noisy environment!
- Traditionally used mostly for robotics, but becoming more widely used
- Lots of open research areas:
 - How to best balance exploration and exploitation?
 - How to deal with cases where we don't know a good state/feature representation?
 - How to best bootstrap the learning process from demonstrations?

Conclusion

- We're done with Part I: Search and Planning!
- We've seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!

