CSE 473: Artificial Intelligence

Bayesian Networks - Learning

Dieter Fox

Slides adapted from Dan Weld, Jack Breese, Dan Klein,
Daphne Koller, Stuart Russell, Andrew Moore & Luke
Zettlemoyer

Learning Topics

= Learning Parameters for a Bayesian Network
= Fully observable
= Hidden variables (EM algorithm)

= Learning Structure of Bayesian Networks

© Daniel S. Weld
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We have:

- Bayes Net structure and observations

- We need: Bayes Net parameters

Parameter Estimation and Bayesian

Networks

B
/ o
Catarn ) T
F

Qe -
P(B) =? =04
=0.6

Parameter Estimation and Bayesian

Networks

E[B [A]

/ T|F | T

S

FIF T

Q@reca) [FIT] [F]

P(AJEB) = ? o
P(AE,~B) = ?
P(A|-EB) = ?
P(A|-E,B) = ?




Parameter Estimation and Bayesian

Networks
E[B [A]
/ T|F | T
(=) T
F|F | T |
Guead (77| [F] D
P(AIE,B) = ?
P(A|E,~B) = ?
P(A|-E,B) = ?

P(A|-E,~B) = 0.5

5/26/17

Parameter Estimation and Bayesian

Networks
/

Now compute
either MAP or
Bayesian estimate

+ data =

?}
i
HERERRE

P(B|data) = 7| i

Parameter Estimation and Bayesian

Networks

=

G E

e
Prior B -B

P(B|data) = Beta(1,4) “+ data”= (37) |3 [7 |

Prior P(B)= 1/(1+4) = 20% with equivalent sample size 5
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The problem of finding labels for unlabeled data

In nature, items often do not come with labels. How can we learn labels without a
teacher?

Expectation Maximization and | Umiabeloddata _ Laboleddata
Gaussian Mixtures
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ANEMIA PATIENTS AND CONTROLS

Fitting a Gaussian PDF to Data
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Component Models

Mixture Model
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Mixtures
If our data is not labeled, we can hypothesize that:

1. There are exactly m classes in the data: ye{l2L ,m}

2. Each class y occurs with a specific frequency: P(J’)

3. Examples of class y are governed by a specific distribution: p(x\ y)

According to our hypothesis, each example x() must have been generated from
a specific “mixture” distribution:

P()=2P(r=)p(r=))
We might hypothesize that the distributions are Gaussian:
Parameters of the distributions 9= {P(y=1),,,%,,-,P(y=m).,.%, }
rlsjo)= gf/»(.v:f)w(x\ﬂ,,z,)

Mixing proportions  Normal distribution

Bayes Net for
Gaussian Mixtures

()
Hidden variable s (Y)

p(x]y) p(x|y=1u,0) p(x|y=3,u,0;)

Measured variable px|y=2m,0,)

p(0) =Y p(y=i)p(x|y=i,u,0,)

i=1

Learning of mixture models

Learning Mixtures from Data

Consider fixed K = 2
e.g., unknown parameters © = {u, 64, lp, O, 0;}

Given data D = {xq,....... Xn}, we want to find the
parameters © that “best fit” the data

1977: The EM Algorithm

= Dempster, Laird, and Rubin
= General framework for likelihood-based parameter
estimation with missing data
= start with initial guesses of parameters
= E-step: estimate memberships given params
= M-step: estimate params given memberships
= Repeat until convergence
= Converges to a local maximum of likelihood
= E-step and M-step are often computationally simple
= Can incorporate priors over parameters




EM for Mixture of Gaussians

= E-step: Compute probability that point x;
was generated by component i:
p;=0 P(x,|IC=i) P(C=i)

P=2p

= M-step: Compute new mean, covariance,
and component weights:
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ANEMIA PATIENTS AND CONTROLS
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EM ITERATION 15 EM ITERATION 25
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We —could-

= But we’ d get a fully-connected network

Hidden Variables

= But we can’t observe the disease variable

= Can’ t we learn without it? With 708 parameters (vs. 78)

Much harder to learn!
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Chicken & Egg Problem Expectation Maximization (EM)

(high-level version)

= |f we knew that a training instance (patient) had
the disease, then it'd be easy to learn
P(symptom | disease)

= Pretend we do know the parameters
= |nitialize randomly
= [E step] Compute probability of instance

: having each possible value of the hidden
= |f we knew params, e.g. P(symptom | disease) variable
then it'd be easy to estimate if the patient had

the disease 2 = [M step] Treating each instance as
@ e @ fractionally having both values compute

the new parameter values
= |terate until convergence!

Learning The Structure

of Bayesian Networks

= Search through the space...
. 5 = of possible network structures!
What if we don’t know = (for now, assume we observe all variables)
structure? = For each structure, learn parameters
= Pick the one that fits observed data best
= Caveat — won’t we end up fully connected????

When scoring, add a penalty for model complexity
Bayesian Information Criterion (BIC)

P(D | BN) — penalty
Penalty = 2 (# parameters) Log (# data points)

Learning The Structure

of Bayesian Networks Structure Learning as Search

= | ocal Search

* Search through the space 1. Start with some network structure

. F<.)r each structurel, learn parameters 2. Try to make a change

= Pick the one that fits observed data best (add or delete or reverse edge)

= Penalize complex models 3. See if the new network is any better

= Problem? = What should the initial state be?
Exponential number of networks! = Uniform prior over random networks?
And we need to learn parameters for each! = Based on prior knowledge?
Exhaustive search out of the question! = Empty network?

= How do we evaluate networks?
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