CSE 473: Artificial Intelligence Bayesian Networks - Learning Dieter Fox Slides adapted from Dan Weld, Jack Breese, Dan Klein,

Learning Topics

Daphne Koller, Stuart Russell, Andrew Moore & Luke Zettlemoyer

- Learning Parameters for a Bayesian Network
 - Fully observable
 - Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks

© Daniel S. Weld

Learning of mixture models

Learning Mixtures from Data

Consider fixed K = 2

e.g., unknown parameters Θ = { μ_1 , σ_1 , μ_2 , σ_2 , α_1 }

Given data D = $\{x_1, \dots, x_N\}$, we want to find the parameters Θ that "best fit" the data

1977: The EM Algorithm

- Dempster, Laird, and Rubin
 - General framework for likelihood-based parameter estimation with missing data
 - start with initial guesses of parameters
 - E-step: estimate memberships given params
 - M-step: estimate params given memberships
 - Repeat until convergence
 - Converges to a local maximum of likelihood
 - E-step and M-step are often computationally simple
 - Can incorporate priors over parameters

EM for Mixture of Gaussians

E-step: Compute probability that point x_j was generated by component i:

$$p_{ij} = \alpha P(x_j \mid C = i) P(C = i)$$
$$p_i = \sum p_{ij}$$

M-step: Compute new mean, covariance, and component weights:

$$\begin{split} \mu_i &\leftarrow \sum_j p_{ij} x_j/p_i \\ \sigma^2 &\leftarrow \sum_j p_{ij} (x_j - \mu_i)^2/p_i \\ w_i &\leftarrow p_i \end{split} \text{ od. Wed and D. Fox}$$

Chicken & Egg Problem

- If we knew that a training instance (patient) had the disease, then it'd be easy to learn P(symptom | disease)
- If we knew params, e.g. P(symptom | disease) then it'd be easy to estimate if the patient had the disease

Expectation Maximization (EM)

(high-level version)

- Pretend we **do** know the parameters
 - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable
- [M step] Treating each instance as fractionally having both values compute the new parameter values
- Iterate until convergence!

What if we **don't** know structure?

Learning The Structure of Bayesian Networks

- Search through the space...
 - of possible network structures!
- (for now, assume we observe all variables)
- For each structure, learn parameters
- Pick the one that fits observed data best
 - Caveat won't we end up fully connected????

When scoring, add a penalty for model complexity Bayesian Information Criterion (BIC)

P(D | BN) - penalty

Penalty = ½ (# parameters) Log (# data points)

Learning The Structure of Bayesian Networks

- Search through the space
- For each structure, learn parameters
- Pick the one that fits observed data best
 - Penalize complex models
- Problem?

Exponential number of networks!

And we need to learn parameters for each!

Exhaustive search out of the question!

Structure Learning as Search

- Local Search
- 1. Start with some network structure
- 2. Try to make a change (add or delete or reverse edge)
- 3. See if the new network is any better
- What should the initial state be?
 - Uniform prior over random networks?
 - Based on prior knowledge?
 - Empty network?
- How do we evaluate networks?

42

