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CSE	473:	Artificial	Intelligence

Bayes’	Nets:	Sampling

Instructors:	Dan	Klein	and	Pieter	Abbeel	--- University	of	California,	Berkeley
[These	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Approximate	Inference:	Sampling

Sampling
§ Sampling	is	a	lot	like	repeated	simulation

§ Predicting	the	weather,	basketball	games,	…

§ Basic	idea
§ Draw	N	samples	from	a	sampling	distribution	S

§ Compute	an	approximate	posterior	probability

§ Show	this	converges	to	the	true	probability	P

§ Why	sample?
§ Learning:	get	samples	from	a	distribution	

you	don’t	know

§ Inference:	getting	a	sample	is	faster	than	
computing	the	right	answer	(e.g.	with	
variable	elimination)

Sampling

§ Sampling	from	given	distribution

§ Step	1:	Get	sample	u from	uniform	
distribution	over	[0,	1)
§ E.g.	random()	in	python

§ Step	2:	Convert	this	sample	u into	an	
outcome	for	the	given	distribution	by	
having	each	outcome	associated	with	
a	sub-interval	of	[0,1)	with	sub-interval	
size	equal	to	probability	of	the	
outcome

§ Example

§ If	random()	returns	u =	0.83,	
then	our	sample	is	C =	blue

§ E.g,	after	sampling	8	times:

C P(C)
red 0.6
green 0.1
blue 0.3

Sampling	in	Bayes’ Nets

§ Prior	Sampling

§ Rejection	Sampling

§ Likelihood	Weighting

§ Gibbs	Sampling

Prior	Sampling
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Prior	Sampling

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c,	-s,	+r,	+w
-c,	+s,	-r,	+w

…

Prior	Sampling

§ For	i=1,	2,	…,	n

§ Sample	xi from	P(Xi |	Parents(Xi))

§ Return	(x1,	x2,	…,	xn)

Prior	Sampling

§ This	process	generates	samples	with	probability:

…i.e.	the	BN’s	joint	probability

§ Let	the	number	of	samples	of	an	event	be

§ Then

§ I.e.,	the	sampling	procedure	is	consistent

Example

§ We’ll get	a	bunch	of	samples	from	the	BN:
+c,	-s,	+r,	+w
+c,	+s,	+r,	+w
-c,	+s,	+r,		-w
+c,	-s,	+r,	+w
-c,		-s,		-r,	+w

§ If	we	want	to	know	P(W)
§ We	have	counts	<+w:4,	-w:1>
§ Normalize	to	get	P(W)	=	<+w:0.8,	-w:0.2>
§ This	will	get	closer	to	the	true	distribution	with	more	samples
§ Can	estimate	anything	else,	too
§ What	about	P(C|	+w)?			P(C|	+r,	+w)?		P(C|	-r,	-w)?
§ Fast:	can	use	fewer	samples	if	less	time	(what’s the	drawback?)

S R

W

C

Rejection	Sampling

+c,	-s,	+r,	+w
+c,	+s,	+r,	+w
-c,	+s,	+r,		-w
+c,	-s,	+r,	+w
-c,		-s,		-r,	+w

Rejection	Sampling

§ Let’s	say	we	want	P(C)
§ No	point	keeping	all	samples	around
§ Just	tally	counts	of	C	as	we	go

§ Let’s	say	we	want	P(C|	+s)
§ Same	thing:	tally	C	outcomes,	but	
ignore	(reject)	samples	which	don’t	
have	S=+s

§ This	is	called	rejection	sampling
§ It	is	also	consistent	for	conditional	
probabilities	(i.e.,	correct	in	the	limit)

S R

W

C
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Rejection	Sampling
§ IN:	evidence	instantiation
§ For	i=1,	2,	…,	n

§ Sample	xi from	P(Xi |	Parents(Xi))

§ If	xi not	consistent	with	evidence
§ Reject:	Return,	and	no	sample	is	generated	in	this	cycle

§ Return	(x1,	x2,	…,	xn)

Likelihood	Weighting

§ Idea:	fix	evidence	variables	and	sample	the	
rest
§ Problem:	sample	distribution	not	consistent!
§ Solution:	weight	by	probability	of	evidence	

given	parents

Likelihood	Weighting

§ Problem	with	rejection	sampling:
§ If	evidence	is	unlikely,	rejects	lots	of	samples
§ Evidence	not	exploited	as	you	sample
§ Consider	P(Shape|blue)

Shape ColorShape Color

pyramid,		green
pyramid,		red
sphere,					blue
cube,									red
sphere,						green

pyramid,		blue
pyramid,		blue
sphere,					blue
cube,									blue
sphere,						blue

Likelihood	Weighting

+c 0.5
-c 0.5

+c +s 0.1
-s 0.9

-c +s 0.5
-s 0.5

+c +r 0.8
-r 0.2

-c +r 0.2
-r 0.8

+s +r +w 0.99
-w 0.01

-r +w 0.90
-w 0.10

-s +r +w 0.90
-w 0.10

-r +w 0.01
-w 0.99

Samples:

+c,	+s,	+r,	+w
…

Cloudy

Sprinkler Rain

WetGrass

Cloudy

Sprinkler Rain

WetGrass

Likelihood	Weighting
§ IN:	evidence	instantiation
§ w	=	1.0
§ for	i=1,	2,	…,	n

§ if	Xi is	an	evidence	variable
§ Xi =	observation	xi for	Xi
§ Set	w	=	w	*	P(xi |	Parents(Xi))

§ else
§ Sample	xi from	P(Xi |	Parents(Xi))

§ return	(x1,	x2,	…,	xn),	w

Likelihood	Weighting

§ Sampling	distribution	if	z	sampled	and	e	fixed	evidence

§ Now,	samples	have	weights

§ Together,	weighted	sampling	distribution	is	consistent

Cloudy

R

C

S

W
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Likelihood	Weighting

§ Likelihood	weighting	is	good
§ We	have	taken	evidence	into	account	as	we	

generate	the	sample
§ E.g.	here,	W’s	value	will	get	picked	based	on	the	

evidence	values	of	S,	R
§ More	of	our	samples	will	reflect	the	state	of	the	

world	suggested	by	the	evidence

§ Likelihood	weighting	doesn’t	solve	all	our	
problems
§ Evidence	influences	the	choice	of	downstream	

variables,	but	not	upstream	ones	(C	isn’t	more	
likely	to	get	a	value	matching	the	evidence)

§ We	would	like	to	consider	evidence	when	we	
sample	every	variable
à Gibbs	sampling

Gibbs	Sampling

Gibbs	Sampling

§ Procedure:	keep	track	of	a	full	instantiation	x1,	x2,	…,	xn.			Start	with	an	
arbitrary	instantiation	consistent	with	the	evidence.		Sample	one	variable	
at	a	time,	conditioned	on	all	the	rest,	but	keep	evidence	fixed.		Keep	
repeating	this	for	a	long	time.

§ Property:	in	the	limit	of	repeating	this	infinitely	many	times	the	resulting	
sample	is	coming	from	the	correct	distribution

§ Rationale:	both	upstream	and	downstream	variables	condition	on	
evidence.

§ In	contrast:	likelihood	weighting	only	conditions	on	upstream	evidence,	
and	hence	weights	obtained	in	likelihood	weighting	can	sometimes	be	
very	small.		Sum	of	weights	over	all	samples	is	indicative	of	how	many	
“effective” samples	were	obtained,	so	want	high	weight.

§ Step	2:	Initialize	other	variables	
§ Randomly

Gibbs	Sampling	Example:	P(	S	|	+r)

§ Step	1:	Fix	evidence
§ R	=	+r

§ Steps	3:	Repeat
§ Choose	a	non-evidence	variable	X
§ Resample	X	from	P(	X	|	all	other	variables)

S +r

W

C

S +r

W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

S +r
W

C

Gibbs	Sampling

§ How	is	this	better	than	sampling	from	the	full	joint?
§ In	a	Bayes’ Net,	sampling	a	variable	given	all	the	other	variables	(e.g.	
P(R|S,C,W))	is	usually	much	easier	than	sampling	from	the	full	joint	
distribution
§ Only	requires	a	join	on	the	variable	to	be	sampled	(in	this	case,	a	join	on	R)
§ The	resulting	factor	only	depends	on	the	variable’s	parents,	its	children,	and	its	children’s	
parents	(this	is	often	referred	to	as	its	Markov	blanket)

Efficient	Resampling	of	One	Variable

§ Sample	from	P(S	|	+c,	+r,	-w)

§ Many	things	cancel	out	– only	CPTs	with	S	remain!
§ More	generally:	only	CPTs	that	have	resampled	variable	need	to	be	considered,	and	

joined	together

S +r

W

C
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Bayes’	Net	Sampling	Summary
§ Prior	Sampling		P

§ Likelihood	Weighting		P(	Q	|	e)

§ Rejection	Sampling		P(	Q	|	e	)

§ Gibbs	Sampling		P(	Q	|	e	)

Further	Reading	on	Gibbs	Sampling*

§ Gibbs	sampling	produces	sample	from	the	query	distribution	P(	Q	|	e	)	
in	limit	of	re-sampling	infinitely	often

§ Gibbs	sampling	is	a	special	case	of	more	general	methods	called	
Markov	chain	Monte	Carlo	(MCMC)	methods	

§ Metropolis-Hastings	is	one	of	the	more	famous	MCMC	methods	(in	fact,	Gibbs	
sampling	is	a	special	case	of	Metropolis-Hastings)	

§ You	may	read	about	Monte	Carlo	methods	– they’re	just	sampling

How	About	Particle	Filtering?

Particles:
(3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)			
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)		w=.9
(2,3)		w=.2
(3,2)		w=.9
(3,1)		w=.4
(3,3)		w=.4
(3,2)		w=.9
(1,3)		w=.1
(2,3)		w=.2
(3,2)		w=.9
(2,2)		w=.4

(New)	Particles:
(3,2)
(2,2)
(3,2)			
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

X2X1 X2

E2
= likelihood weighting

Particle	Filtering

§ Particle	filtering	operates	on	ensemble	of	samples
§ Performs	likelihood	weighting	for	each	individual	sample	to	elapse	time	and	
incorporate	evidence

§ Resamples	from	the	weighted	ensemble	of	samples	to	focus	computation	for	
the	next	time	step	where	most	of	the	probability	mass	is	estimated	to	be


