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CSE	473:	Artificial	Intelligence

Bayes’	Nets:	Inference

Dieter	Fox
[These	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Bayes’ Nets

§ Representation

§ Conditional	Independences

§ Probabilistic	Inference
§ Enumeration	(exact,	exponential	complexity)
§ Variable	elimination	(exact,	worst-case

exponential	complexity,	often	better)
§ Probabilistic	inference	is	NP-complete
§ Sampling	(approximate)

§ Learning	Bayes’ Nets	from	Data

§ Examples:

§ Posterior	probability

§ Most	likely	explanation:

Inference

§ Inference:	calculating	some	
useful	quantity	from	a	joint	
probability	distribution
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Onisko et al CBMI-99-27 (1999)

Inference	by	Enumeration
§ General	case:

§ Evidence	variables:	
§ Query*	variable:
§ Hidden	variables: All	variables

*	Works	fine	with	
multiple	query	
variables,	too

§ We	want:

§ Step	1:	Select	the	
entries	consistent	
with	the	evidence

§ Step	2:	Sum	out	H	to	get	joint	
of	Query	and	evidence

§ Step	3:	Normalize

⇥ 1

Z

Inference	by	Enumeration	in	Bayes’	Net
§ Given	unlimited	time,	inference	in	BNs	is	easy

§ Reminder	of	inference	by	enumeration	by	example:
B E
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P (B |+ j,+m) /B P (B,+j,+m)

=
X

e,a

P (B, e, a,+j,+m)

=
X

e,a

P (B)P (e)P (a|B, e)P (+j|a)P (+m|a)

=P (B)P (+e)P (+a|B,+e)P (+j|+ a)P (+m|+ a) + P (B)P (+e)P (�a|B,+e)P (+j|� a)P (+m|� a)

P (B)P (�e)P (+a|B,�e)P (+j|+ a)P (+m|+ a) + P (B)P (�e)P (�a|B,�e)P (+j|� a)P (+m|� a)
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Inference	by	Enumeration?

P (Antilock|observed variables) = ?

Inference	by	Enumeration	vs.	Variable	Elimination
§ Why	is	inference	by	enumeration	so	slow?

§ You	join	up	the	whole	joint	distribution	before	
you	sum	out	the	hidden	variables

§ Idea:	interleave	joining	and	marginalizing!
§ Called	“Variable	Elimination”
§ Still	NP-hard,	but	usually	much	faster	than	

inference	by	enumeration

§ First	we’ll	need	some	new	notation:	factors

Factor	Zoo Factor	Zoo	I

§ Joint	distribution:	P(X,Y)
§ Entries	P(x,y)	for	all	x,	y
§ Sums	to	1

§ Selected	joint:	P(x,Y)
§ A	slice	of	the	joint	distribution
§ Entries	P(x,y)	for	fixed	x,	all	y
§ Sums	to	P(x)

§ Number	of	capitals	=	
dimensionality	of	the	table

T W P

hot sun 0.4

hot rain 0.1

cold sun 0.2

cold rain 0.3

T W P

cold sun 0.2

cold rain 0.3

Factor	Zoo	II

T W P

hot sun 0.8

hot rain 0.2

cold sun 0.4

cold rain 0.6

T W P

cold sun 0.4

cold rain 0.6

§ Single	conditional:	P(Y	|	x)
§ Entries	P(y	|	x)	for	fixed	x,	all	y
§ Sums	to	1

§ Family	of	conditionals:	
P(X	|Y)
§ Multiple	conditionals
§ Entries	P(x	|	y)	for	all	x,	y
§ Sums	to	|Y|

Factor	Zoo	III

§ Specified	family:	P(	y	|	X	)
§ Entries	P(y	|	x)	for	fixed	y,

but	for	all	x
§ Sums	to	…	who	knows!

T W P

hot rain 0.2

cold rain 0.6
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Factor	Zoo	Summary

§ In	general,	when	we	write	P(Y1 …	YN |	X1 …	XM)

§ It	is	a	“factor,” a	multi-dimensional	array

§ Its	values	are	P(y1 …	yN |	x1 …	xM)

§ Any	assigned	(=lower-case)	X	or	Y	is	a	dimension	missing	(selected)	from	the	array

Example:	Traffic	Domain

§ Random	Variables
§ R:	Raining
§ T:	Traffic
§ L:	Late	for	class! T

L

R
+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

P (L) = ?

=
X

r,t

P (r, t, L)

=
X

r,t

P (r)P (t|r)P (L|t)

Inference	by	Enumeration:	Procedural	Outline

§ Track	objects	called	factors
§ Initial	factors	are	local	CPTs	(one	per	node)

§ Any	known	values	are	selected
§ E.g.	if	we	know																		,	the	initial	factors	are

§ Procedure:	Join	all	factors,	then	eliminate	all	hidden	variables

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t +l 0.3
-t +l 0.1

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

Operation	1:	Join	Factors

§ First	basic	operation:	joining	factors
§ Combining	factors:

§ Just	like	a	database	join
§ Get	all	factors	over	the	joining	variable
§ Build	a	new	factor	over	the	union	of	the	variables	

involved

§ Example:	Join	on	R

§ Computation	for	each	entry:	pointwise products

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81T

R

R,T

Example:	Multiple	Joins Example:	Multiple	Joins

T

R Join	R

L

R, T

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

R, T, L

+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

Join	T
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Operation	2:	Eliminate

§ Second	basic	operation:	marginalization

§ Take	a	factor	and	sum	out	a	variable
§ Shrinks	a	factor	to	a	smaller	one

§ A	projection operation

§ Example:

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t 0.17
-t 0.83

Multiple	Elimination

Sum
out	R

Sum
out	T

T, L LR, T, L
+r +t +l 0.024
+r +t -l 0.056
+r -t +l 0.002
+r -t -l 0.018
-r +t +l 0.027
-r +t -l 0.063
-r -t +l 0.081
-r -t -l 0.729

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.886

Thus	Far:	Multiple	Join,	Multiple	Eliminate	(=	Inference	by	Enumeration) Marginalizing	Early	(=	Variable	Elimination)

Traffic	Domain

§ Inference	by	EnumerationT

L

R P (L) = ?

§ Variable	Elimination

=
X

t

P (L|t)
X

r

P (r)P (t|r)

Join	on	rJoin	on	r

Join	on	t

Join	on	t

Eliminate	r

Eliminate	t

Eliminate	r

=
X

t

X

r

P (L|t)P (r)P (t|r)

Eliminate	t

Marginalizing	Early!	(aka	VE)
Sum	out	R

T

L

+r +t 0.08
+r -t 0.02
-r +t 0.09
-r -t 0.81

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+t 0.17
-t 0.83

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

T

R

L

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Join	R

R, T

L

T, L L

+t +l 0.051
+t -l 0.119
-t +l 0.083
-t -l 0.747

+l 0.134
-l 0.866

Join	T Sum	out	T
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Evidence

§ If	evidence,	start	with	factors	that	select	that	evidence
§ No	evidence	uses	these	initial	factors:

§ Computing																								,	the	initial	factors	become:

§ We	eliminate	all	vars	other	than	query	+	evidence

+r 0.1
-r 0.9

+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

+r 0.1 +r +t 0.8
+r -t 0.2

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

Evidence	II

§ Result	will	be	a	selected	joint	of	query	and	evidence
§ E.g.	for	P(L	|	+r),	we would end	up	with:

§ To	get	our	answer,	just	normalize	this!

§ That ’s	it!

+l 0.26
-l 0.74

+r +l 0.026
+r -l 0.074

Normalize

General	Variable	Elimination

§ Query:

§ Start	with	initial	factors:
§ Local	CPTs	(but	instantiated	by	evidence)

§ While	there	are	still	hidden	variables	
(not	Q	or	evidence):
§ Pick	a	hidden	variable	H
§ Join	all	factors	mentioning	H
§ Eliminate	(sum	out)	H

§ Join	all	remaining	factors	and	normalize

Example

Choose A

Example

Choose	E

Finish	with	B

Normalize

Same	Example	in	Equations

marginal	can	be	obtained	from	joint	by	summing	out

use	Bayes’ net	joint	distribution	expression

use	x*(y+z)	=	xy +	xz

joining	on	a,	and	then	summing	out	gives	f1

use	x*(y+z)		=	xy +	xz

joining	on	e,	and	then	summing	out	gives	f2

All	we	are	doing	is	exploiting	uwy +	uwz +	uxy +	uxz +	vwy +	vwz +	vxy +vxz =	(u+v)(w+x)(y+z)	to	improve	computational	efficiency!
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Another	Variable	Elimination	Example

Computational	complexity	critically	
depends	on	the	largest	factor	being	
generated	in	this	process.		Size	of	factor	
=	number	of	entries	in	table.		In	
example	above	(assuming	binary)	all	
factors	generated	are	of	size	2	--- as	
they	all	only	have	one	variable	(Z,	Z,	
and	X3 respectively).	

Variable	Elimination	Ordering

§ For	the	query	P(Xn|y1,…,yn)	work	through	the	following	two	different	orderings	
as	done	in	previous	slide:	Z,	X1,	…,	Xn-1 and	X1,	…,	Xn-1,	Z.		What	is	the	size	of	the	
maximum	factor	generated	for	each	of	the	orderings?

§ Answer:	2n versus	21 (assuming	binary)

§ In	general:	the	ordering	can	greatly	affect	efficiency.		

…

…

VE:	Computational	and	Space	Complexity

§ The	computational	and	space	complexity	of	variable	elimination	is	
determined	by	the	largest	factor

§ The	elimination	ordering	can	greatly	affect	the	size	of	the	largest	factor.		
§ E.g.,	previous	slide’s	example	2n vs.	2

§ Does	there	always	exist	an	ordering	that	only	results	in	small	factors?
§ No!

Worst	Case	Complexity?
§ CSP:		

§ If	we	can	answer	P(z)	equal	to	zero	or	not,	we	answered	whether	the	3-SAT	problem	has	a	solution.

§ Hence	inference	in	Bayes’ nets	is	NP-hard.		No	known	efficient	probabilistic	inference	in	general.

…

…

Polytrees

§ A	polytree is	a	directed	graph	with	no	undirected	cycles

§ For	poly-trees	you	can	always	find	an	ordering	that	is	efficient	
§ Try	it!!

§ Cut-set	conditioning	for	Bayes’ net	inference
§ Choose	set	of	variables	such	that	if	removed	only	a	polytree remains
§ Exercise:	Think	about	how	the	specifics	would	work	out!

Bayes’ Nets

§ Representation

§ Conditional	Independences

§ Probabilistic	Inference

§ Enumeration	(exact,	exponential	
complexity)

§ Variable	elimination	(exact,	worst-case	
exponential	complexity,	often	better)

§ Inference	is	NP-complete

§ Sampling	(approximate)

§ Learning	Bayes’ Nets	from	Data


