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CSE 473: Artificial Intelligence

Bayes’ Nets: Inference

Dieter Fox

Bayes’ Nets

JRepresentation
JConditionaI Independences

= Probabilistic Inference

= Enumeration (exact, exponential complexity)

= Variable elimination (exact, worst-case
exponential complexity, often better)

= Probabilistic inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data

Inference

= Inference: calculating some

= Examples:

useful quantity from a joint

probability distribution

= Posterior probability

P(Q|E1 =e1,... B, =¢;)

= Most likely explanation:

argmax, P(Q =q|Ey =e1...)

N 2 N

Inference by Enumeration

Inference by Enumeration in Bayes’ Net

= General case:
= Evidence variables:
= Query* variable:
* Hidden variables:

Step 1: Select the
entries consistent
with the evidence

* We want:
El..vb'k:(:l,.v(‘k}xlyx2 _____ Xn

Q P(Qley . ..ex)

Hy...H, All variables

= Step 2: Sum out H to get joint
of Query and evidence

L P

“ r Z

= Step 3: Normalize

Z=7 P(Qer-ex)

* Works fine with
multiple query
variables, too

= Given unlimited time, inference in BNs is easy

:ZP(B,e,a,+j,+m)

=" P(B)P(c)P(a| B, e)P(+jla) P(+m]a)

= Reminder of inference by enumeration by example:

P(B | +j,+m) < P(B,+j,+m)

P(B)P(+e)P(+a|B,+e)P(+j| + a)P(+m| + a) + P(B)P(+e)P(—a|B, +e)P(+j| — a)P(+m| — a

P(Qer...e) = Y P(Qhy.. hrer...ep) 7 P(B)P(=€)P(+alB. —¢)P(+j| + a) P(+m| + a) + P(B)P(~e)P(~a| B, —e)P(+j| — a) P(+m| — a
@hhne e
iy o x ~ P(Qley---ex) = = P(Q,e1---ex)




Inference by Enumeration?

Inference by Enumeration vs. Variable Elimination

P(Antilock|observed variables) = ?

= Why is inference by enumeration so slow? = Idea: interleave joining and marginalizing!
= You join up the whole joint distribution before
you sum out the hidden variables

= Called “Variable Elimination”
= Still NP-hard, but usually much faster than
inference by enumeration

= First we’ll need some new notation: factors

Factor Zoo

Factor Zoo |

P(T,W)
= Joint distribution: P(X,Y) T W | P
= Entries P(x,y) for all x, y hot sun | 0.4
" Sumstol hot | rain | 0.1

cold sun | 0.2

cold rain | 0.3

= Selected joint: P(x,Y)

= Aslice of the joint distribution P(cold, W)
= Entries P(x,y) for fixed x, all y T w P
= Sums to P(x) cold sun | 0.2

cold rain | 0.3

= Number of capitals =

dimensionality of the table

Factor Zoo Il

Factor Zoo Il

Single conditional: P(Y | x)
= Entries P(y | x) for fixed x, all y
® Sumstol

P(W |cold)
T w | P

cold sun 0.4

cold rain | 0.6

RIS
R

P(W|T)
Family of conditionals: T w P
h 08
P(X|Y) hm sun oe } POW]hot)
= Multiple conditionals ot rain .
= Entries P(x | y) forallx, y cold | sun |04 } P(W|cold)
cold | rain | 0.6
= Sumsto |Y]|

= Specified family: P(y | X)
= Entries P(y | x) for fixed y,
but for all x
= Sums to ... who knows!

P(rain|T)

T w | P
hot | rain | 0.2 |} P(rain|hot)
cold | rain_| 06 |} P(rain|cold)




Factor Zoo Summary Example: Traffic Domain
= |n general, when we write P(Y; ... Yy | X ... Xy1) = Random Variables
= Itisa “factor,” a multi-dimensional array = R: Raining o
* ltsvaluesare P(yy ... yy | Xy .. X) = T: Traffic
= Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array = L: Late for class! a
P(L) =7 0
P(L|T
- Z P(r.t,L) +t ( +|| )0.3
ald +t | |07
=" P(r)P(t]r)P(LIt) T Tes
it
Inference by Enumeration: Procedural Outline Operation 1: Join Factors

= Track objects called factors

1 = First basic operation: joining factors
= |nitial factors are local CPTs (one per node) @ 9 = Combining factors: . =
. = Just like a database join % =1
P(R) P(T|R) P(L|T) EQ/\H e + Getall factors over the joining variable

~ .
} o } m } e TR SO 2 ’ * Build a new factor over the union of the variables
- [t o W] E
e o [ Tox D involved
1 los « 1 los
= Example: Joinon R

= Any known values are selected
= E.g.if we know L = -+, the initial factors are

o P(R) x P(T|IR) =—=> P(R,T)

P(R) P(T|R) P(+L|T) [+ To1] +r[+t]08 +r | +t ] 0.08 @
o Toi] = Tos ool [r Tos] +r| t[02 +r | -t [0.02
[T os | wr |t o2 [T Toa] e r [ +t]oa o | +t] 009

[ o ]t ]o9 | t]ost

o o9

= Procedure: Join all factors, then eliminate all hidden variables

= Computation for each entry: pointwise products V7, t :  P(r,t) = P(r) - P(t|r)

Example: Multiple Joins Example: Multiple Joins f.’“i

TE

(®) i P(R,T)
= JoinR ;
. . PUR oy [E o -
+r ] -t [0.02
e 0.09

+r |+t 0.8 o]t
wltlos “Talos] CRTD P(R,T,L)

o [+t]o1 +r |+t | + [0.024
o -r|-tfog +r | +t | -1 |0.056
- | | 0.002
P(L|T P(L|IT o ot
=> (ZIT) (ZIT) wr |t | 1 0018
+t | +1(0.3 +t | +(0.3 -t +t + | 0.027
+t] 07 +t] 107 o |+t | 4 0063

-t | +]0.1 -t | +]0.1 <t | + |0.081
-t|-1]09 -t|-1]0.9 -t -l ]0.729




Operation 2: Eliminate

Multiple Elimination

= Second basic operation: marginalization
= Take a factor and sum out a variable K
= Shrinks a factor to a smaller one

= A projection operation

= Example: g\j

P(R,T)

+r | +t | 0.08 sum R P(T)
+r| -t | 0.02 |:>

-r | +t]0.09

-r|-t|0.81

P(R,T, L)

4r |+t | + |0.024
4r | +t | -l |0.056

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration

Marginalizing Early (= Variable Elimination)

(-
N -

-

Traffic Domain

Marginalizing Early! (aka VE)

e = Inference by Enumeration = Variable Elimination

722}7 LI P(r)P(t]r) =Y P(L|) Y P(r)P(tr)
o |ﬁ_l t 7 e—

Joinon r Joinonr

Joinont Eliminate r

R
Eliminate r Joinont
—_— -
Eliminate t Eliminate t

JoinR  p(R,T) SumoutR Join T Sumout T
P(R =>
(B) = +r | +t | 0.08 = P(T) =
+r] ] 002
[r[o9] - |+t ] 0.09
-r | -t | 0.81
i @D
+r |+t (0.8 @ @
+r]-t]o2 .1
o [+t]o1 P(T,L
EEIX PL)
r g +t | +1 | 0.051
+t | -1]0.119 [+ [o134]
P(LIT) P(L|T) P(LIT) -t | + ] 0.083 - 0.866
+t|+]03 +t | +]0.3 -t |-l |0.747
] ]07 i . o3 |07
[+ 01 < alox -t [+]0.1
[ ]o9 T los [ ]o9




Evidence

Evidence Il

= |f evidence, start with factors that select that evidence
= No evidence uses these initial factors:

P(R) P(T|R) P(LIT)
[ T o1 ] +r |+t [08 st |+ o3
[ Tos| 4| t 02 ElER Y
TaToer T Tor
-r -t [ 09 -t -l 09

= computingP(L| 4 7) the initial factors become:

P(+r) P(T|+r)  PUT)

03]

[ To1] [r Tt Tos] [

st 02

= We eliminate all vars other than query + evidence

= Result will be a selected joint of query and evidence
= E.g.for P(L| +r), we would end up with:

Normalize P(L|+ 1)

= To get our answer, just normalize this!

= That’sit!

General Variable Elimination

Example

Query: P(Q|E1p = ey, ... B = ¢;)

Start with initial factors:
= Local CPTs (but instantiated by evidence)

While there are still hidden variables [". . - m
(not Q or evidence): =
= Pick a hidden variable H
= Join all factors mentioning H
= Eliminate (sum out) H

Join all remaining factors and normalize

P(B|j,m) < P(B, j,m)

P(B) P(E) P(AB,E)  P(j|A) P(mlA)‘

Choose A
P(A|B,E)
P(j]A4) X > P(j,m,A|B,E) [ > P(j,m|B,E)
P(m|A)
‘ P(B) P(E) P(j.m\BiE)‘

Example Same Example in Equations
[Py P®)  PGmIBE) | Q2 P(Blj,m) x P(B, j,m) Qo
Choose E (P& P PABE) PGA) Pl |
P(E) B:> P(j,m, E|B) §:> P(j,m|B) o @ P(Blj,m) x P(B,jm) o o
P(j, m |B, E) = Y P(B.j.m.e.a) marginal can be obtained from joint by summing oul
= Z P(B)P(e)P(a|B,e)P(jla)P(m|a) use Bayes’ net joint distribution expression
‘ P(B) P(j,m|B) ‘ = Y P(BYP(e) Y. P(alB,e)P(jlayP(mla)  usex*(y+2) = xy + xz
Finish with B = XP(B)I’(r')/l(Bm.j.m) joining on a, and then summing out gives f;

P(I;(::EB) B‘[> P(j,m,B) P(B‘j.}n)

= P(B)Y P()f1(B,e5;m)
= P(B)f2(B,j,m)

use x*(y+2) = xy +xz
joining on e, and then summing out gives f,

All we are doing is exploiting Uwy + UWZ + UXy + UXZ + VWY + VWZ + Vxy +vxz = (u4v)(w+x)(y+2) to improve computational efficiency!




Another Variable Elimination Example

Variable Elimination Ordering

Query: P(X3|Y1 =y1,Y2 =2, Y5 =y3) @)
Start by inserting evidence, which gives the following initial factors:

2K 20 (X2|Z)p(Xs| Z)p(ys | X dply2| X2 )plys| Xa)

Eliminate X, this introduces the factor fy(Z,51) = 3, pla1|Z)p(yle1), and

we are left with:

P22, y)p(Xa| Z)p(Xs| Z)p (] Xo)p (ys| Xs)

Eliminate X», this introduces the factor f2(Z,y2) = 3, plas| Z)p(alw), and
we are left with:

PZ)VFUZ ) Fa (212 X ) (] Xs)

Eliminate Z, this introduces the factor fa(y1.y2, X3) = 32, p(2)fi(z,11) fa(2, y2)p( X32)
and we are left

Computational complexity critically
depends on the largest factor being
generated in this process. Size of factor
) Sa(ur, g, Xa) = number of entries in table. In

example above (assuming binary) all
factors generated are of size 2 — as
they all only have one variable (z,Z,
and X; respectively).

No hidden variables left. Join the remaining factors to get
Jalys, 2oy, Xa) = Plys|Xa) falyr, 2, Xu)

Normalizing over X gives P(Xsly1, y2,us)

= For the query P(X,|yy,...,y,) work through the following two different orderings
as done in previous slide: Z, X;, ..., X,y and Xy, ..., X1, Z. What is the size of the
maximum factor generated for each of the orderings?

= Answer: 2" versus 2! (assuming binary)

= Ingeneral: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

Worst Case Complexity?

The computational and space complexity of variable elimination is
determined by the largest factor

The elimination ordering can greatly affect the size of the largest factor.

= E.g., previous slide’s example 2" vs. 2

Does there always exist an ordering that only results in small factors?

= No!

P(X,=0)=P(X,=1) =05

= CSP:

(z1VaaVmg)A(—3y VsV -2g ) A 22V mo VEg ) A(~x3V ~zyVozs ) A(22VEs Vg ) A(24VEs Ve ) A(~zs VoV -zr )A (-2 V -z Var)

Yi=Xi1VXoV-X;

Yy = sV XeV X7
=1 AY,

Yos=YrAYe

Yioas=YizAYaa

= |If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.

= Hence inference in Bayes’ nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

Bayes’ Nets

= Apolytree is a directed graph with no undirected cycles

= For poly-trees you can always find an ordering that is efficient
= Tryit!!

= Cut-set conditioning for Bayes’ net inference

= Choose set of variables such that if removed only a polytree remains
= Exercise: Think about how the specifics would work out!

& Representation

« Conditional Independences

Probabilistic Inference

« Enumeration (exact, exponential
complexity)

JVariable elimination (exact, worst-case
exponential complexity, often better)

o Inference is NP-complete

= Sampling (approximate)

= Learning Bayes’ Nets from Data




