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CSE	473:	Artificial	Intelligence

Bayes’	Nets

Dieter	Fox
[Most	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Bayes’ Nets:	Big	Picture

§ Two	problems	with	using	full	joint	distribution	tables	
as	our	probabilistic	models:
§ Unless	there	are	only	a	few	variables,	the	joint	is	WAY	too	

big	to	represent	explicitly
§ Hard	to	learn	(estimate)	anything	empirically	about	more	

than	a	few	variables	at	a	time

§ Bayes’ nets:	a	technique	for	describing	complex	joint	
distributions	(models)	using	simple,	local	
distributions	(conditional	probabilities)
§ More	properly	called graphical	models
§ We	describe	how	variables	locally	interact
§ Local	interactions	chain	together	to	give	global,	indirect	

interactions
§ For	about	10	min,	we’ll be	vague	about	how	these	

interactions	are	specified

Graphical	Model	Notation

§ Nodes:	variables	(with	domains)
§ Can	be	assigned	(observed)	or	unassigned	

(unobserved)

§ Arcs:	interactions
§ Similar	to	CSP	constraints
§ Indicate	“direct	influence” between	variables
§ Formally:	encode	conditional	independence	

(more	later)

§ For	now:	imagine	that	arrows	mean	
direct	causation	(in	general,	they	don’t!)

Example:	Coin	Flips

§ N	independent	coin	flips

§ No	interactions	between	variables:	absolute	independence

X1 X2 Xn

Example:	Traffic

§ Variables:
§ R:	It	rains
§ T:	There	is	traffic

§ Model	1:	independence

§ Why	is	an	agent	using	model	2	better?

R

T

R

T

§ Model	2:	rain	causes	traffic

§ Let’s	build	a	causal	graphical	model!
§ Variables

§ T:	Traffic
§ R:	It	rains
§ L:	Low	pressure
§ D:	Roof	drips
§ B:	Ballgame
§ C:	Cavity

Example:	Traffic	II
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Example:	Alarm	Network
§ Variables

§ B:	Burglary
§ A:	Alarm	goes	off
§ M:	Mary	calls
§ J:	John	calls
§ E:	Earthquake!

J

A

B

M

E

Bayes’ Net	Semantics

Bayes’ Net	Semantics
§ A	set	of	nodes,	one	per	variable	X

§ A	directed,	acyclic	graph

§ A	conditional	distribution	for	each	node

§ A	collection	of	distributions	over	X,	one	for	each	
combination	of	parents’ values

§ CPT:	conditional	probability	table

§ Description	of	a	noisy	“causal” process

A1

X

An

A	Bayes	net	=	Topology	(graph)	+	Local	Conditional	Probabilities

P(A1 )  ….     P(An )

Probabilities	in	BNs

§ Bayes’ nets	implicitly encode	joint	distributions

§ As	a	product	of	local	conditional	distributions

§ To	see	what	probability	a	BN	gives	to	a	full	assignment,	multiply	all	the	
relevant	conditionals	together:

§ Example:

Probabilities	in	BNs

§ Why	are	we	guaranteed	that	setting

results	in	a	proper	joint	distribution?		

§ Chain	rule	(valid	for	all	distributions):	

§ Assume conditional	independences:	

à Consequence:

§ Not	every	BN	can	represent	every	joint	distribution

§ The	topology	enforces	certain	conditional	independencies
Only	distributions	whose	variables	are	absolutely	independent	can	be	
represented	by	a	Bayes’ net	with	no	arcs.

Example:	Coin	Flips

h 0.5
t 0.5

h 0.5
t 0.5

h 0.5
t 0.5

X1 X2 Xn
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Example:	Traffic

R

T

+r 1/4
-r 3/4

+r +t 3/4
-t 1/4

-r +t 1/2
-t 1/2

Example:	Alarm	Network

Burglary Earthqk

Alarm

John	
calls

Mary	
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)
+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)
+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)
+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

Example:	Traffic

§ Causal	direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16

Example:	Reverse	Traffic

§ Reverse	causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16

Causality?

§ When	Bayes’ nets	reflect	the	true	causal	patterns:
§ Often	simpler	(nodes	have	fewer	parents)
§ Often	easier	to	think	about
§ Often	easier	to	elicit	from	experts

§ BNs	need	not	actually	be	causal
§ Sometimes	no	causal	net	exists	over	the	domain	

(especially	if	variables	are	missing)
§ E.g.	consider	the	variables	Traffic and	Drips
§ End	up	with	arrows	that	reflect	correlation,	not	causation

§ What	do	the	arrows	really	mean?
§ Topology	may	happen	to	encode	causal	structure
§ Topology	really	encodes	conditional	independence

Size	of	a	Bayes’ Net

§ How	big	is	a	joint	distribution	over	N	
Boolean	variables?

2N

§ How	big	is	an	N-node	net	if	nodes	
have	up	to	k	parents?

O(N	*	2k+1)

§ Both	give	you	the	power	to	calculate

§ BNs:	Huge	space	savings!

§ Also	easier	to	elicit	local	CPTs

§ Also	faster	to	answer	queries	(coming)
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Bayes’ Nets

§ So	far:	how	a	Bayes’ net	encodes	a	joint	
distribution

§ Next:	how	to	answer	queries	about	that	
distribution
§ Today:	

§ First	assembled	BNs	using	an	intuitive	notion	of	
conditional	independence	as	causality

§ Then	saw	that	key	property	is	conditional	independence
§ Main	goal:	answer	queries	about	conditional	

independence	and	influence	

§ After	that:	how	to	answer	numerical	queries	
(inference)


