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CSE	473:	Artificial	Intelligence
Particle	Filters

Dieter	Fox	--- University	of	Washington
[Most	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Particle	Filtering
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§ Filtering:	approximate	solution

§ Sometimes	|X|	is	too	big	to	use	exact	inference
§ |X|	may	be	too	big	to	even	store	B(X)
§ E.g.	X	is	continuous
§ |X|2 may	be	too	big	to	do	updates

§ Solution:	approximate	inference
§ Track	samples	of	X,	not	all	values
§ Samples	are	called	particles
§ Time	per	step	is	linear	in	the	number	of	samples
§ But:	number	needed	may	be	large
§ In	memory:	list	of	particles,	not	states

§ This	is	how	robot	localization	works	in	practice

Representation:	Particles

§ Our	representation	of	P(X)	is	now	a	list	of	N	particles	(samples)
§ Generally,	N	<<	|X|
§ Storing	map	from	X	to	counts	would	defeat	the	point

§ P(x)	approximated	by	number	of	particles	with	value	x
§ So,	many	x	may	have	P(x)	=	0!	
§ More	particles,	more	accuracy

§ For	now,	all	particles	have	a	weight	of	1

Particles:
(3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particle	Filtering:	Elapse	Time

§ Each	particle	is	moved	by	sampling	its	next	
position	from	the	transition	model

§ This	is	like	prior	sampling	– samples’ frequencies	
reflect	the	transition	probabilities

§ Here,	most	samples	move	clockwise,	but	some	move	in	
another	direction	or	stay	in	place

§ This	captures	the	passage	of	time
§ If	enough	samples,	close	to	exact	values	before	and	

after	(consistent)

Particles:
(3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Particles:
(3,2)
(2,3)
(3,2)			
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

§ Slightly	trickier:
§ Don’t	sample	observation,	fix	it

§ Similar	to	likelihood	weighting,	downweight
samples	based	on	the	evidence

§ As	before,	the	probabilities	don’t	sum	to	one,	
since	all	have	been	downweighted (in	fact	they	
now	sum	to	(N	times)	an	approximation	of	P(e))

Particle	Filtering:	Observe

Particles:
(3,2)		w=.9
(2,3)		w=.2
(3,2)		w=.9
(3,1)		w=.4
(3,3)		w=.4
(3,2)		w=.9
(1,3)		w=.1
(2,3)		w=.2
(3,2)		w=.9
(2,2)		w=.4

Particles:
(3,2)
(2,3)
(3,2)			
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particle	Filtering:	Resample

§ Rather	than	tracking	weighted	samples,	we	
resample

§ N	times,	we	choose	from	our	weighted	sample	
distribution	(i.e.	draw	with	replacement)

§ This	is	equivalent	to	renormalizing	the	
distribution

§ Now	the	update	is	complete	for	this	time	step,	
continue	with	the	next	one

Particles:
(3,2)		w=.9
(2,3)		w=.2
(3,2)		w=.9
(3,1)		w=.4
(3,3)		w=.4
(3,2)		w=.9
(1,3)		w=.1
(2,3)		w=.2
(3,2)		w=.9
(2,2)		w=.4

(New)	Particles:
(3,2)
(2,2)
(3,2)			
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)
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Recap:	Particle	Filtering
§ Particles:	track	samples	of	states	rather	than	an	explicit	distribution

Particles:
(3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)			
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)		w=.9
(2,3)		w=.2
(3,2)		w=.9
(3,1)		w=.4
(3,3)		w=.4
(3,2)		w=.9
(1,3)		w=.1
(2,3)		w=.2
(3,2)		w=.9
(2,2)		w=.4

(New)	Particles:
(3,2)
(2,2)
(3,2)			
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

[Demos:	ghostbusters particle	filtering	(L15D3,4,5)]

Particle Filters in Robotics

Robot	Localization

§ In	robot	localization:
§ We	know	the	map,	but	not	the	robot’s	position
§ Observations	may	be	vectors	of	range	finder	readings
§ State	space	and	readings	are	typically	continuous	(works	

basically	like	a	very	fine	grid)	and	so	we	cannot	store	B(X)
§ Particle	filtering	is	a	main	technique

Bayes	Filter	for	Robot	
Localization

GP-Based	WiFi	Sensor	Model

Mean

Variance
5/13/17

11 CSE-571: Probabilistic 
Robotics

Bayes Filters: Framework
• Given:

• Stream of observations z and action data u:

• Sensor model P(z|x).
• Action model P(x|u,x�).
• Prior probability of the system state P(x).

• Wanted: 
• Estimate of the state X of a dynamical system.
• The posterior of the state is also called Belief:

),,,|()( 121 tttt zuzuxPxBel -= !

},,,{ 121 ttt zuzud -= !

Bayes	Filters

),,,|(),,,,|( 1111 ttttt uzuxPuzuxzP !!h=Bayes

z = observation
u = action
x = state

),,,|()( 11 tttt zuzuxPxBel !=

Markov ),,,|()|( 11 tttt uzuxPxzP !h=

111 )(),|()|( ---ò= ttttttt dxxBelxuxPxzPh

Markov
11111 ),,,|(),|()|( ---ò= tttttttt dxuzuxPxuxPxzP !h

 
=η P(zt | xt ) P(xt | u1, z1,…,ut , xt−1)∫ P(xt−1 | u1, z1,…,ut ) dxt−1Marginal.



3

Markov	Assumption

Underlying	Assumptions
§ Static	world
§ Independent	noise
§ Perfect	model,	no	approximation	errors

),|(),,|( 1:11:11:1 ttttttt uxxpuzxxp --- =
)|(),,|( :11:1:0 tttttt xzpuzxzp =-

Piecewise 
Constant Belief

Piecewise Constant Representation

),,( >=< qyxxBel t

Proximity Sensor Model

Laser sensor Sonar sensor

Probabilistic Kinematics

22 )'()'( yyxxtrans -+-=d
qd ---= )','(atan21 xxyyrot

12 ' rotrot dqqd --=

• Robot moves from  to            . 
• Odometry information                           . 

q,, yx ',',' qyx

transrotrotu ddd ,, 21=

transd
1rotd

2rotd

q,, yx

',',' qyx

Probabilistic Kinematics

§ Odometry information is inherently noisy.

x’
u

p(x|u,x’)

u

x’
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Sonars and Occupancy Grid Map Laser-based Localization

Museum	Tourguide Minerva
§ Particle sets can be used to approximate densities

Sample-Based Density Approximation

§ The more particles fall into an interval, the higher the probability of that interval

§ How to draw samples form a function/distribution?

§ We can use a different distribution g to generate samples from f
§ By introducing an importance weight w, we can account for the “differences 

between g and f ”
§ w = f / g
§ f is often called

target
§ g is often called

proposal

Importance Sampling Principle Particle Filters
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Sensor Information: Importance Sampling
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Robot Motion
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Sensor Information: Importance Sampling Robot Motion
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draw xi
t-1 from Bel(xt-1)

draw xi
t from p(xt | xi

t-1,ut-1)

Importance factor for xi
t:
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Particle Filter Algorithm

Start

Sampled Motion Model
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47

Particle	Filter	Localization	(Sonar)

[Video:	global-floor.gif]
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Aibo Sensor Model Distributions
for P(z|x)

Localization for AIBO robots WiFi-Based	People	Tracking

WiFi Sensor Model

Mean

Variance

Tracking Example
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Adaptive Sampling
KLD-Sampling Sonar

Adapt number of particles on the fly based 
on statistical approximation measure

KLD-Sampling Laser Robot	Mapping
§ SLAM:	Simultaneous	Localization	And	Mapping

§ We	do	not	know	the	map	or	our	location
§ State	consists	of	position	AND	map!
§ Main	techniques:	Kalman filtering	(Gaussian	HMMs)	

and	particle	methods

DP-SLAM,	Ron	Parr
[Demo:	PARTICLES-SLAM-mapping1-new.avi]

Mapping	with	a	Laser	Scanner

MIT Robotics 2015 Dieter Fox: RGB-D Perception 
in Robotics

Rao-Blackwellized Mapping with Scan-Matching
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Loop Closure Example

map of particle 1 map of particle 3

map of particle 2

3 particles

Rao-Blackwellized Mapping with Scan-
Matching
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Rao-Blackwellized Mapping with Scan-
Matching
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Example (Intel Lab)
§ 15 particles
§ four times faster 

than real-time
P4, 2.8GHz

§ 5cm resolution 
during scan 
matching

§ 1cm resolution in 
final map

Work by Grisetti et al.

Outdoor Campus Map
§ 30 particles
§ 250x250m2

§ 1.75 km 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map

Work by Grisetti et al.

§ 30 particles
§ 250x250m2

§ 1.088 miles 
(odometry)

§ 20cm resolution 
during scan 
matching

§ 30cm resolution 
in final map


