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Particle Filtering

= Filtering: approximate solution

= Sometimes |X| is too big to use exact inference

= |X] may be too big to even store B(X)
= E.g.Xis continuous
= |X|? may be too big to do updates

= Solution: approximate inference
= Track samples of X, not all values
= Samples are called particles
= Time per step is linear in the number of samples
= But: number needed may be large
= In memory: list of particles, not states

= This is how robot localization works in practice

00 | 02 | 05
[
(1)
)

Representation: Particles

Particle Filtering: Elapse Time

= Our representation of P(X) is now a list of N particles (samples)

Each particle is moved by sampling its next
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Recap: Particle Filtering

= Particles: track samples of states rather than an explicit distribution
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[Demos: particle filtering (L1503,4,5)) |

Robot Localization

In robot localization:
= We know the map, but not the robot’s position

Observations may be vectors of range finder readings D\RECTORY
State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

Bayes Filter for Robot
Localization [ .

Particle filtering is a main technique

z = observation
- . u = action
Bayes Filters: Framework Bayes Filters x = state

® Given: Bel(x,) + P(x, |u,,z2, ...,u,,z,)
e Stream of observations z and action data u: = Pz, | %07, ) P(x. |z )
d1={u1,zz.u,u,,|,zl} t (0 Lt LRARE Aerd t 1221 000y

e Sensor model P(z|x). =n P(z,|x,) P(x, |u,z,...,u,)

e Action model P(x|u,x’).

e Prior probability of the system state P(x). =1 P(z, le)J.P(x, Ly 2y otty X, P 1y 2y ot,) X,
® Wanted:

e Estimate of the state X of a dynamical system. =n P(z, \xl)J.P(xr |u,,x,)) P(x,_, |uy,2,,....u,) dx,_,

* The posterior of the state is also called Belief:

£0 PG, %) [ PGy ., ) Bel(x, ) dv, |

Bel(x,)=P(x, |u,,2, ...,u, ,2,)
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Markov Assumption

Piecewise
Constant Belief

Pz | X520 5t,) = p(z,]X,)
PO | Xy Zygotty) = pOx | X,u,)

= Static world
= Independent noise
= Perfect model, no approximation errors

Piecewise Constant Representation Proximity Sensor Model
Bel(x, =< x,y,0 >)
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Probabilistic Kinematics Probabilistic Kinematics

* Robot moves from (%,7,0) to (¥',5',8")
» Odometry information ,, _ <5 S S >
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= Odometry information is inherently noisy.
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Robot position (A)

Sonars and Occupancy Grid Map
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Laser-based Localization

Museum Tourguide Minerva

Sample-Based Density Approximation

Particle sets can be used to approximate densities
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The more particles fall into an interval, the higher the probability of that interval

How to draw samples form a function/distribution?

Importance Sampling Principle

Particle Filters

We can use a different distribution g to generate samples from f
By introducing an importance weight w, we can account for the “differences

between g and

w=[/g

fis often called

K proposal(x)

target = target(x)
. = samples

g is often called 2

proposal

probability




Sensor Information: Importance Sampling
Bel(x) <« o p(z|x) Bel (x)

Robot Motion

a p(z|x) Bel (x)
Bel (x)

Bel (x) <— Ip(x\u,x')Bel(x') dx

Sensor Information: Importance Sampling
Bel(x) <« o p(z|x)Bel (x)

Robot Motion

a p(z|x) Bel (x)
w <« —Bel’(x) = o p(z|x)

Bel (x) < _|' p(x|u.x") Bel(x') dx
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Particle Filter Algorithm

Sampled Motion Model

Bel (x) = 1 p(z,1x) [ pCx, |5 po.) Bel (x,.) d,,

L L draw x',_; from Bel(x,_)

draw x', from p(x, | x',_,u,_;)
Importance factor for x';:

W= target distribution
proposal distribution
_ n.prGE1x) px X ,u.,) Bel (x,,)
PCx, X u, ) Bel (x,,)
o< pz, | x,)
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Particle Filter Localization (Sonar)

[Video: global-floor.gif]




Aibo Sensor Model

Distributions ]
for P(z|x)

Localization for AIBO robots

WiFi-Based People Tracking

WiFi Sensor Model

Tracking Example

Variance




KLD-Sampling Sonar
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Robot positiot
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Adapt number of particles on the fly based
on statistical approximation measure

KLD-Sampling Laser

Robot Mapping

= SLAM: Simultaneous Localization And Mapping
® We do not know the map or our location
= State consists of position AND map!
= Main techniques: Kalman filtering (Gaussian HMMs)
and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mappingl-new.avi

Mapping with a Laser Scanner

Rao-Blackwellized Mapping with Scan-Matching

MIT Robotics 2015

Dieter Fox: RGB-D Perception
in Robotics

Map: Intel Research Lab Seattle
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Rao-Blackwellized Mapping with Scan-
Matching

Loop Closure Example

3 particles

Map: Intel Research Lab Seattle

Rao-Blackwellized Mapping with Scan-
Matching

Example (Intel Lab)

Map: Intel Research Lab Seattle

four times faster
than real-time

- t P4, 2.8GHz

f 5cm resolution

during scan
matching
1cm resolution in
final map

Work by Grisetti et al.

Outdoor Campus Map

250x250m?
1.088 miles
(odometry)
20cm resolution
during scan
matching

30cm resolution
in final map

Work by Grisetti et al.
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