

## Hidden Markov Models

- Markov chains not so useful for most agents
- Eventually you don't know anything anymore
- Need observations to update your beliefs
- Hidden Markov models (HMMs)
- Underlying Markov chain over states S
- You observe outputs (effects) at each time step
- As a Bayes' net:


| Hidden Markov Models |
| :---: |
| Defines a joint probability distribution: |
| $P\left(X_{1}, \ldots, X_{n}, E_{1}, \ldots, E_{n}\right)=$ |
| $P\left(X_{1: n}, E_{1: n}\right)=$ |
| $P\left(X_{1}\right) P\left(E_{1} \mid X_{1}\right) \prod_{t=2}^{N} P\left(X_{t} \mid X_{t-1}\right) P\left(E_{t} \mid X_{t}\right)$ |
| $X_{1}$ |



| HMM Computations |
| :--- |
| - Given |
| parameters <br> - evidence $E_{1: n}=e_{1: n}$ <br> - Inference problems include: <br> - Filtering, find $P\left(X_{i} \mid e_{1: 7}\right)$ for all $t$ <br> - Smoothing, find $P\left(X_{l} \mid e_{1: n}\right)$ for all $t$ <br> - Most probable explanation, find <br> $x_{1: n}^{*}=$ argmax $x_{1: n} P\left(x_{1: n} \mid e_{1: n}\right)$ |
|  |


| Real HMM Examples |
| :---: |
| - Speech recognition HMMs: <br> - Observations are acoustic signals (continuous valued) <br> - States are specific positions in specific words (so, tens of thousands) |



| Real HMM Examples |
| :---: |
| - Robot tracking: <br> - Observations are range readings (continuous) <br> - States are positions on a map (continuous) |



| Filtering / Monitoring |
| :--- |
| - Filtering, or monitoring, is the task of tracking the distribution $\mathrm{B}(\mathrm{X})$ (the belief state) |
| over time |
| - We start with $\mathrm{B}(\mathrm{X})$ in an initial setting, usually uniform |
| - As time passes, or we get observations, we update $\mathrm{B}(\mathrm{X})$ |
| - The Kalman filter (one method - Real valued values) |
| - invented in the 60's as a method of trajectory estimation for the Apollo program |




| Inference Recap: Simple Cases |  |
| :---: | :---: |
|  | $\begin{gathered} X_{1} \rightarrow X_{2} \\ P\left(X_{2}\right) \end{gathered}$ |
| $\begin{aligned} P\left(x_{1} \mid e_{1}\right) & =P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\ & \propto_{X_{1}} P\left(x_{1}, e_{1}\right) \\ & =P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right) \end{aligned}$ | $\begin{aligned} P\left(x_{2}\right) & =\sum_{x_{1}} P\left(x_{1}, x_{2}\right) \\ & =\sum_{x_{1}} P\left(x_{1}\right) P\left(x_{2} \mid x_{1}\right) \end{aligned}$ |


| Online Belief Updates |  |
| :---: | :---: |
| - Every time step, we start with current P(X \| evidence) |  |
| - We update for time | I |
| $P\left(x_{t} \mid e_{1: t-1}\right)=\sum_{x_{t-1}} P\left(x_{t-1} \mid e_{1: t-1}\right) \cdot P\left(x_{t} \mid x_{t-1}\right)$ |  |
| - We update for evidence: |  |
| $P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(x_{t} \mid e_{1: t-1}\right) \cdot P\left(e_{t} \mid x_{t}\right)$ <br> - The forward algorithm does both at once (and doesn't normalize <br> - Problem: space is $\|\mathrm{X}\|$ and time is $\|\mathrm{X}\|^{2}$ per time step |  |


| Passage of Time |
| :---: |
| - Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ evidence to date) $B\left(X_{t}\right)=P\left(X_{t} \mid e_{1: t}\right)$ <br> - Then, after one time step passes: $P\left(X_{t+1} \mid e_{1: t}\right)=\sum_{x_{t}} P\left(X_{t+1} \mid x_{t}\right) P\left(x_{t} \mid e_{1: t}\right)$ <br> - Or, compactly: $B^{\prime}\left(X^{\prime}\right)=\sum_{x} P\left(X^{\prime} \mid x\right) B(x)$ <br> - Basic idea: beliefs get "pushed" through the transitions <br> - With the " $B$ " notation, we have to be careful about what time step $t$ the belief is about, and what evidence it includes |



## Observation

| Observation |
| :--- |
| - Assume we have current belief $\mathrm{P}(\mathrm{X} \mid$ previous evidence $)$ : |
| - Then: $\quad B^{\prime}\left(X_{t+1}\right)=P\left(X_{t+1} \mid e_{1: t}\right)$ |
| - Or: $P\left(X_{t+1} \mid e_{1: t+1}\right) \propto P\left(e_{t+1} \mid X_{t+1}\right) P\left(X_{t+1} \mid e_{1: t}\right)$ |
| - Basic idea: beliefs reweighted by likelihood of evidence |
| - Unlike passage of time, we have to renormalize |



| The Forward Algorithm |
| :---: |
| - We want to know: $\quad B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)$ <br> - We can derive the following updates $\begin{aligned} P\left(x_{t} \mid e_{1: t}\right) & \propto X_{X} P\left(x_{t}, e_{1: t}\right) \\ & =\sum_{x_{t-1}} P\left(x_{t-1}, x_{t}, e_{1: t}\right) \\ & =\sum_{x_{t-1}} P\left(x_{t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right) \\ & =P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right) \end{aligned}$ <br> To get $B_{t}(X)$. compute each entry and normalize |




| New device |  |
| :---: | :---: | :---: |
| Dieter Fox, University of Washington |  |




| Viterbi Algorithm |  |
| ---: | :--- |
| $x_{1: T}^{*}$ | $=\underset{x_{1: T}}{\arg \max } P\left(x_{1: T} \mid e_{1: T}\right)=\arg _{x_{1: T}} \max P\left(x_{1: T}, e_{1: T}\right)$ |
| $m_{t}\left[x_{t}\right]$ | $=\max _{x_{1: t-1}} P\left(x_{1: t-1}, x_{t}, e_{1: t}\right)$ |
|  | $=\max _{x_{1: t-1}} P\left(x_{1: t-1}, e_{1: t-1}\right) P\left(x_{t} \mid x_{t-1}\right) P\left(e_{t} \mid x_{t}\right)$ |
|  | $=P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) \max _{x_{1: t-}} P\left(x_{1: t-1}, e_{1: t-1}\right)$ |
|  | $=P\left(e_{t} \mid x_{t}\right) \max _{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) m_{t-1}\left[x_{t-1}\right]$ |



