

Quiz: Events			
- $P(+x,+y)$?	$P(X, Y)$		
- $P(+x)$?	X	Y	P
	+x	+y	0.2
	+x	-y	0.3
	-x	+y	0.4
	-x	-y	0.1
- P(-y OR $+x)$?			

Marginal Distributions						
- Marginal distributions are sub-tables which eliminate variables - Marginalization (summing out): Combine collapsed rows by adding $P(T)$						
T	w	P	$P(t)=\sum_{s} P(t, s)$	hot	P 0.5	
hot	sun	0.4				
hot	rain	0.1		$P(W)$		
cold	sun	0.2	$\overrightarrow{P(s)=\sum_{t} P(t, s)}$	W	P	
cold	rain	0.3		sun	0.6	
				rain	0.4	
$P\left(X_{1}=x_{1}\right)=\sum_{x_{2}} P\left(X_{1}=x_{1}, X_{2}=x_{2}\right)$						

Inference by Enumeration				
- P(W)?	s	T	w	P
		hot	sun	0.30
- P(W \| winter)?	summe r	hot	rain	0.05
	summe r	cold	sun	0.10
	summe r	cold	rain	0.05
- P(W \| winter, hot)?	winter	hot	sun	0.10
	winter	hot	rain	0.05
	winter	cold	sun	0.15
	winter	cold	rain	0.20

Inference by Enumeration
- Computational problems?
- Worst-case time complexity O(dn)
• Space complexity O(dn) to store the joint distribution

The Product Rule
• Sometimes have conditional distributions but want the joint
$P(y) P(x \mid y)=P(x, y) \Longleftrightarrow P(x \mid y)=\frac{P(x, y)}{P(y)}$

$\left.$| Conditional Independence |
| :---: |
| - Unconditional (absolute) independence very rare (why?) |
| - Conditional independence is our most basic and robust form |
| of knowledge about uncertain environments. |
| - X is conditionally independent of Y given z |
| if and only if: |
| $\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)$ |
| or, equivalently, if and only if |
| $\forall x, y, z: P(x \mid z, y)=P(x \mid z)$ |$\quad X \Perp Y \right\rvert\, Z \quad$| |
| :--- |

Ghostbusters, Revisited			
- Let's say we have two distributions:			
- Prior distribution over ghost location: P(G)	0.11	0.11	0.11
- Let's say this is uniform - Sensor reading model: $P(R \mid G)$	0.11	0.11	0.11
- Given: we know what our sensors do - $R=$ reading color measured at $(1,1)$	0.11	0.11	0.11
- E.g. $P(R=$ yellow $\mid ~ G=(1,1))=0.1$	0.17	0.10	0.10
- We can calculate the posterior distribution $\mathrm{P}(\mathrm{G} \mid \mathrm{r})$ over ghost locations given a reading	0.09	0.17	0.10
using Bayes' rule: $\quad P(g \mid r) \propto P(r \mid g) P(g)$	<0.01	0.09	0.17
[Demo: Ghostbuster - with probability (L1202)]			

Video of Demo Gho

Probability Recap
- Conditional probability - Product rule $\begin{aligned} & P(x \mid y)=\frac{P(x, y)}{P(y)} \\ & P(x, y)=P(x \mid y) P(y) \end{aligned}$ - Chain rule $\begin{aligned} P\left(X_{1}, X_{2}, \ldots X_{n}\right) & =P\left(X_{1}\right) P\left(X_{2} \mid X_{1}\right) P\left(X_{3} \mid X_{1}, X_{2}\right) \ldots \\ & =\prod_{i=1}^{n} P\left(X_{i} \mid X_{1}, \ldots, X_{i-1}\right) \end{aligned}$ - Bayes rule $\quad P(x \mid y)=\frac{P(y \mid x)}{P(y)} P(x)$ - X, Y independent if and only if: $\forall x, y: P(x, y)=P(x) P(y)$ - X and Y are conditionally independent given $\mathrm{Z}: \quad X \Perp Y \mid Z$ if and only if: $\forall x, y, z: P(x, y \mid z)=P(x \mid z) P(y \mid z)$

