

How to Explore? Several schemes for forcing exploration Simplest: random actions (ε-greedy) Every time step, flip a coin With (small) probability ε, act randomly With (large) probability 1-ε, act on current policy

- Problems with random actions? You do eventually explore the space, but keep thrashing around once learning is done

 - One solution: lower ε over time
 Another solution: exploration functions

Video of Demo Q-learning - Manual Exploration - Bridge Grid

Exploration Functions When to explore? Random actions: explore a fixed amount Better idea: explore areas whose badness is not (yet) established, eventually stop exploring Exploration function - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. f(u,n)=u+k/n**Regular Q-Update:** $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} Q(s', a')$ Modified Q-Update: $Q(s, a) \leftarrow_{\alpha} R(s, a, s') + \gamma \max_{a'} f(Q(s', a'), N(s', a'))$ Note: this propagates the "bonus" back to states that lead to unknown states as well!

Policy Search

- Simplest policy search:
- Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than before
- Problems:
 - How do we tell the policy got better?
 - Need to run many sample episodes!
 - If there are a lot of features, this can be impractical
- Better methods exploit lookahead structure, sample wisely, change multiple parameters...

Controlling a Low-Cost Robotic Manipulator

- Low-cost system (\$500 for robot arm and Kinect)

- Low-cost system (\$500 for robot arm and Kinect)
 Very nois:
 No sensor information about robot's joint configuration used
 Goal: Learn to stack tower of 5 blocks from scratch
 Kinect camera for tracking block in end-effector
 State: coordinates (3D) of block center (from Kinect camera)
 4 controlled DoF
 20 learning trials for stacking 5 blocks (5 seconds long each)
 consult of aystem noise, e.g.,
 Rost am
 Image processing

