CS 473: Artificial Intelligence

Reinforcement Learning Il

Dieter Fox / University of Washington

[Most sides were taken from Dan Klein and Pieter Abbeel / CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai berkeley.edu.]

Exploration vs. Exploitation

How to Explore?

= Several schemes for forcing exploration

= Simplest: random actions (e-greedy)
= Every time step, flip a coin

= With (small) probability €, act randomly

Video of Demo Q-learning — Manual Exploration — Bridge Grid

= With (large) probability 1-€, act on current policy

= Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

* One solution: lower € over time

= Another solution: exploration functions

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

= When to explore?

= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

of.

returns an optimistic utility, e.g. /(u,n) = u+k/n

= Takes a value estimate u and a visit count n, and

Regular Q-Update: Q(s,a) ¢ R(s.a.s") +7maxQ(s',d)

Modified Q-Update: Q(s,a) < R(s,a,s') +ymax [(Q(s, '), N(s.a"))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

Video of Demo Q-learning — Exploration Function — Crawler

Regret

Even if you learn the optimal policy,
you still make mistakes along the way T

Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!
= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
Generalize that experience to new, similar situations

This is a fundamental idea in machine learning, and we'll '

see it over and over again @

[demo_ RLpacman]

Example: Pacman

Video of Demo Q-Learning Pacman — Tiny — Watch All

Let’s say we discover
through experience
that this state is bad:

In naive g-learning,
we know nothing
about this state:

Or even this one!

[Demo: Q-learning ~ pacman ~ tiny - watch all (L11D5)]
[Demo: Q-learning ~ pacman ~ tiny ~ silent train (L11D6}]
[Demo: Q-learning - pacman — trickv— watch gl (L11D7)]

Video of Demo Q-Learning Pacman —Tiny — Silent Train

Video of Demo Q-Learning Pacman — Tricky — Watch All

Feature-Based Representations

Linear Value Functions

= Solution: describe a state using a vector of
features (aka “properties”)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
Distance to closest ghost
Distance to closest dot
Number of ghosts
1/ (dist to dot)?
Is Pacman in a tunnel? (0/1)
. etc.
= Is it the exact state on this slide?
= Canalso describe a g-state (s, a) with features (e.g.
action moves closer to food)

Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) = wifi1(s) + wafa(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)Fwafa(s,a)+.. . +wnfa(s,a)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

Example: Q-Pacman

[Q(s,a) = wy f1(s,a)twafa(s,a)+...4wnfn(s,a) }

Q-learning with linear Q-functions:

transition = (s, a,r,s")

difference = |r ++

”qx:g(d.”’) Q(s,a)
Q(s,a) — Q(s,a) + a[difference] Exact Qs

w; — w; + a [difference] f;(s,a) Approximate Q's

Intuitive interpretation:
= Adjust weights of active features

= Eg, if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

Formal justification: online least squares

Q(s,a) = 4.0fpor(s,a) — 1.0fgs7(s,a)

fpor(s, NORTH) = 0.5
a = NORTH
r = —500

fasr(s, NORTH) = 1.0

Q(s,NORTH) = +1
7+~ max Q(s',a’) = =500+ 0
a

difference = —501 |::> wpor + 4.0 + «[-501] 0.5
wgst < —1.0 +a [-501] 1.0

Q(s,a) = 3.0fpor(s,;a) — 3.0fgsr(s,a) | [oemo: oo

aning acman (11101011

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression*

Optimization: Least Squares*

f1(2)

Prediction: Prediction:

§ = wo + w1 f1(z) 9i = wo + w1 f1(z) + wafa(x)

2
total error = 3~ (yi — 5)° =% (.u, - Zu-kfmg)
i i ¥

. Error or “residual”
Observation Y

Prediction g

’ F1(2) °

Minimizing Error*

Overfitting: Why Limiting Capacity Can Help*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = ; (_,/ -3 u‘h/),(.r))
T

a error(w)
wm

=- <y -3 ll'g-fA-(A‘)) fm(z)
n

Wi — wm + o (y -3 u'k/;,-(.'l‘)) Jm(x)

"

Approximate g update explained:
Wm — wm + « [r + v max Qs a") — Q(s, u)] fm(s,a)

“target” “prediction”

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
= E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions
= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

Policy Search

Simplest policy search:
= Start with an initial linear value function or Q-function
= Nudge each feature weight up and down and see if your policy is better than before

Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= If there are a lot of features, this can be impractical

Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

[Andrew Ng] [Video: HELICOPTER]

PILCO (probabilistic Inference for Learning Control)

Demo: Standard Benchmark Problem

‘policy search

it 7 (random) Tearn GP. bolicy evaluation 7(0)
apply random actions record data dynamics modell policy gradient d./d0

+ Model-based policy search to minimize given cost function
« Policy: mapping from state to control

+ Rollout: plan using current policy and GP dynamics model
« Policy parameter update via CG/BFGS

« Highly data efficient

[Deisenroth-etal, ICML-11, RSS-11, ICRA-14, PAMI-14)

Swing pendulum up and
balance in inverted position

Learn nonlinear control from
scratch

4D state space, 300 controlle
parameters

7 trials/17.5 sec experience
Control freq.: 10 Hz

trial #1 (randon

Controlling a Low-Cost Robotic Manipulator

Playing Atari with Deep Reinforcement Learning

Low-cost system ($500 for robot arm and Kinect)
Very noisy
No sensor information about robot's joint
configuration used
Goal: Learn to stack tower of 5 blocks from
scratch
Kinect camera for tracking block in end-effector
State: coordinates (3D) of block center (from
Kinect camera)
4 controlled DoF
20 learning trials for stacking 5 blocks (5 seconds
long each)

« Account for system noise, e.g.,
— Robot arm
— Image processing

Deepmind Al Playing Atari

That’s all for Reinforcement Learning!

Data (experiences with

Reinforcement Learning
environment)

gent

= Very tough problem: How to perform any task well in an
unknown, noisy environment!

= Traditionally used mostly for robotics, but becoming more widely
used

= Lots of open research areas:
= How to best balance exploration and exploitation?

= How to deal with cases where we don’t know a good state/feature
representation?

Conclusion

= We're done with Part I: Search and Planning!

= We've seen how Al methods can solve
problems in:
= Search
Constraint Satisfaction Problems.
Games
Markov Decision Problems
Reinforcement Learning

= Next up: Part IIl: Uncertainty and Learning!

