
1

CS	473:	Artificial	Intelligence
Reinforcement	Learning	II

Dieter	Fox	/	University	of	Washington
[Most	slides	were	taken	from	Dan	Klein	and	Pieter	Abbeel /	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Exploration	vs.	Exploitation

How	to	Explore?

§ Several	schemes	for	forcing	exploration
§ Simplest:	random	actions	(ε-greedy)

§ Every	time	step,	flip	a	coin
§ With	(small)	probability	ε,	act	randomly
§ With	(large)	probability	1-ε,	act	on	current	policy

§ Problems	with	random	actions?
§ You	do	eventually	explore	the	space,	but	keep	
thrashing	around	once	learning	is	done

§ One	solution:	lower	ε over	time
§ Another	solution:	exploration	functions

Video	of	Demo	Q-learning	– Manual	Exploration	– Bridge	Grid	

Video	of	Demo	Q-learning	– Epsilon-Greedy	– Crawler	 Exploration	Functions
§ When	to	explore?

§ Random	actions:	explore	a	fixed	amount
§ Better	idea:	explore	areas	whose	badness	is	not
(yet)	established,	eventually	stop	exploring

§ Exploration	function
§ Takes	a	value	estimate	u	and	a	visit	count	n,	and
returns	an	optimistic	utility,	e.g.

§ Note:	this	propagates	the	“bonus”	back	to	states	that	lead	to	unknown	states	as	well!

Modified	Q-Update:

Regular	Q-Update:

2

Video	of	Demo	Q-learning	– Exploration	Function	– Crawler	 Regret

§ Even	if	you	learn	the	optimal	policy,	
you	still	make	mistakes	along	the	way!

§ Regret	is	a	measure	of	your	total	
mistake	cost:	the	difference	between	
your	(expected)	rewards,	including	
youthful	suboptimality,	and	optimal	
(expected)	rewards

§ Minimizing	regret	goes	beyond	
learning	to	be	optimal	– it	requires	
optimally	learning	to	be	optimal

§ Example:	random	exploration	and	
exploration	functions	both	end	up	
optimal,	but	random	exploration	has	
higher	regret

Approximate	Q-Learning Generalizing	Across	States

§ Basic	Q-Learning	keeps	a	table	of	all	q-values

§ In	realistic	situations,	we	cannot	possibly	learn	
about	every	single	state!
§ Too	many	states	to	visit	them	all	in	training
§ Too	many	states	to	hold	the	q-tables	in	memory

§ Instead,	we	want	to	generalize:
§ Learn	about	some	small	number	of	training	states	from	

experience
§ Generalize	that	experience	to	new,	similar	situations
§ This	is	a	fundamental	idea	in	machine	learning,	and	we’ll	

see	it	over	and	over	again

[demo	– RL	pacman]

Example:	Pacman

[Demo:	Q-learning	– pacman – tiny	– watch	all	(L11D5)]
[Demo:	Q-learning	– pacman – tiny	– silent	train	(L11D6)]	
[Demo:	Q-learning	– pacman – tricky	– watch	all	(L11D7)]

Let’s	say	we	discover	
through	experience	
that	this	state	is	bad:

In	naïve	q-learning,	
we	know	nothing	
about	this	state:

Or	even	this	one!

Video	of	Demo	Q-Learning	Pacman – Tiny	– Watch	All

3

Video	of	Demo	Q-Learning	Pacman – Tiny	– Silent	Train Video	of	Demo	Q-Learning	Pacman – Tricky	– Watch	All

Feature-Based	Representations

§ Solution:	describe	a	state	using	a	vector	of	
features (aka	“properties”)
§ Features	are	functions	from	states	to	real	numbers	

(often	0/1)	that	capture	important	properties	of	the	
state

§ Example	features:
§ Distance	to	closest	ghost
§ Distance	to	closest	dot
§ Number	of	ghosts
§ 1	/	(dist	to	dot)2
§ Is	Pacman in	a	tunnel?	(0/1)
§ ……	etc.
§ Is	it	the	exact	state	on	this	slide?

§ Can	also	describe	a	q-state	(s,	a)	with	features	(e.g.	
action	moves	closer	to	food)

Linear	Value	Functions

§ Using	a	feature	representation,	we	can	write	a	q	function	(or	value	function)	for	any	
state	using	a	few	weights:

§ Advantage:	our	experience	is	summed	up	in	a	few	powerful	numbers

§ Disadvantage:	states	may	share	features	but	actually	be	very	different	in	value!

Approximate	Q-Learning

§ Q-learning	with	linear	Q-functions:

§ Intuitive	interpretation:
§ Adjust	weights	of	active	features
§ E.g.,	if	something	unexpectedly	bad	happens,	blame	the	features	that	were	on:	

disprefer all	states	with	that	state’s	features

§ Formal	justification:	online	least	squares

Exact Q’s

Approximate Q’s

Example:	Q-Pacman

[Demo:	approximate	Q-
learning	pacman (L11D10)]

4

Video	of	Demo	Approximate	Q-Learning	-- Pacman Q-Learning	and	Least	Squares

0 200

20

40

0
10

20
30

40

0

10

20

30

20

22

24

26

Linear	Approximation:	Regression*

Prediction: Prediction:

Optimization:	Least	Squares*

0 20
0

Error or “residual”

Prediction

Observation

Minimizing	Error*

Approximate	q	update	explained:

Imagine	we	had	only	one	point	x,	with	features	f(x),	target	value	y,	and	weights	w:

“target” “prediction”
0 2 4 6 8 10 12 14 16 18 20

-15

-10

-5

0

5

10

15

20

25

30

Degree 15 polynomial

Overfitting:	Why	Limiting	Capacity	Can	Help*

5

Policy	Search Policy	Search

§ Problem:	often	the	feature-based	policies	that	work	well	(win	games,	maximize	
utilities)	aren’t	the	ones	that	approximate	V	/	Q	best
§ E.g.	your	value	functions	from	project	2	were	probably	horrible	estimates	of	future	rewards,	but	they	

still	produced	good	decisions
§ Q-learning’s	priority:	get	Q-values	close	(modeling)
§ Action	selection	priority:	get	ordering	of	Q-values	right	(prediction)

§ Solution:	learn	policies	that	maximize	rewards,	not	the	values	that	predict	them

§ Policy	search:	start	with	an	ok	solution	(e.g.	Q-learning)	then	fine-tune	by	hill	climbing	
on	feature	weights

Policy	Search

§ Simplest	policy	search:
§ Start	with	an	initial	linear	value	function	or	Q-function
§ Nudge	each	feature	weight	up	and	down	and	see	if	your	policy	is	better	than	before

§ Problems:
§ How	do	we	tell	the	policy	got	better?
§ Need	to	run	many	sample	episodes!
§ If	there	are	a	lot	of	features,	this	can	be	impractical

§ Better	methods	exploit	lookahead structure,	sample	wisely,	change	
multiple	parameters…

Policy	Search

[Andrew	Ng] [Video:	HELICOPTER]

PILCO	(Probabilistic	Inference	for	Learning	Control)

• Model-based policy search to minimize given cost function
• Policy: mapping from state to control
• Rollout: plan using current policy and GP dynamics model
• Policy parameter update via CG/BFGS
• Highly data efficient

[Deisenroth-etal, ICML-11, RSS-11, ICRA-14, PAMI-14]

Demo:	Standard	Benchmark	Problem

§ Swing	pendulum	up	and	
balance	in	inverted	position

§ Learn	nonlinear	control	from	
scratch

§ 4D	state	space,	300	controller	
parameters

§ 7	trials/17.5	sec	experience
§ Control	freq.:	10	Hz

6

Controlling	a	Low-Cost	Robotic	Manipulator

• Low-cost system ($500 for robot arm and Kinect)
• Very noisy
• No sensor information about robot’s joint

configuration used
• Goal: Learn to stack tower of 5 blocks from

scratch
• Kinect camera for tracking block in end-effector
• State: coordinates (3D) of block center (from

Kinect camera)
• 4 controlled DoF
• 20 learning trials for stacking 5 blocks (5 seconds

long each)
• Account for system noise, e.g.,

– Robot arm
– Image processing

Playing Atari with Deep Reinforcement Learning

Volodymyr Mnih Koray Kavukcuoglu David Silver Alex Graves Ioannis Antonoglou

Daan Wierstra Martin Riedmiller

DeepMind Technologies

{vlad,koray,david,alex.graves,ioannis,daan,martin.riedmiller} @ deepmind.com

Abstract

We present the first deep learning model to successfully learn control policies di-
rectly from high-dimensional sensory input using reinforcement learning. The
model is a convolutional neural network, trained with a variant of Q-learning,
whose input is raw pixels and whose output is a value function estimating future
rewards. We apply our method to seven Atari 2600 games from the Arcade Learn-
ing Environment, with no adjustment of the architecture or learning algorithm. We
find that it outperforms all previous approaches on six of the games and surpasses
a human expert on three of them.

1 Introduction

Learning to control agents directly from high-dimensional sensory inputs like vision and speech is
one of the long-standing challenges of reinforcement learning (RL). Most successful RL applica-
tions that operate on these domains have relied on hand-crafted features combined with linear value
functions or policy representations. Clearly, the performance of such systems heavily relies on the
quality of the feature representation.

Recent advances in deep learning have made it possible to extract high-level features from raw sen-
sory data, leading to breakthroughs in computer vision [11, 22, 16] and speech recognition [6, 7].
These methods utilise a range of neural network architectures, including convolutional networks,
multilayer perceptrons, restricted Boltzmann machines and recurrent neural networks, and have ex-
ploited both supervised and unsupervised learning. It seems natural to ask whether similar tech-
niques could also be beneficial for RL with sensory data.

However reinforcement learning presents several challenges from a deep learning perspective.
Firstly, most successful deep learning applications to date have required large amounts of hand-
labelled training data. RL algorithms, on the other hand, must be able to learn from a scalar reward
signal that is frequently sparse, noisy and delayed. The delay between actions and resulting rewards,
which can be thousands of timesteps long, seems particularly daunting when compared to the direct
association between inputs and targets found in supervised learning. Another issue is that most deep
learning algorithms assume the data samples to be independent, while in reinforcement learning one
typically encounters sequences of highly correlated states. Furthermore, in RL the data distribu-
tion changes as the algorithm learns new behaviours, which can be problematic for deep learning
methods that assume a fixed underlying distribution.

This paper demonstrates that a convolutional neural network can overcome these challenges to learn
successful control policies from raw video data in complex RL environments. The network is
trained with a variant of the Q-learning [26] algorithm, with stochastic gradient descent to update
the weights. To alleviate the problems of correlated data and non-stationary distributions, we use

1

Deepmind AI	Playing	Atari That’s	all	for	Reinforcement	Learning!

§ Very	tough	problem:	How	to	perform	any	task	well	in	an	
unknown,	noisy	environment!

§ Traditionally	used	mostly	for	robotics,	but	becoming	more	widely	
used

§ Lots	of	open	research	areas:
§ How	to	best	balance	exploration	and	exploitation?
§ How	to	deal	with	cases	where	we	don’t	know	a	good	state/feature	
representation?	

Reinforcement Learning
Agent

Data (experiences with
environment)

Policy (how to act in
the future)

Conclusion

§ We’re	done	with	Part	I:	Search	and	Planning!

§ We’ve	seen	how	AI	methods	can	solve	
problems	in:
§ Search
§ Constraint	Satisfaction	Problems
§ Games
§ Markov	Decision	Problems
§ Reinforcement	Learning

§ Next	up:	Part	II:	Uncertainty	and	Learning!

