

The "Credit Assignment" Problem	
l'm in state 43, 39, 22,	reward = 0, action = 2 " = 0, " = 4 " = 0, " = 1
	6

Why Not Use Policy Evaluation?

- Simplified Bellman updates calculate V for a fixed policy:
- Each round, replace V with a one-step-look-ahead layer over V

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$

- This approach fully exploited the connections between the states
 Unfortunately, we need T and R to do it!
- Key question: how can we do this update to V without knowing T and R?
 - In other words, how do we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

- We want to improve our estimate of V by computing these averages: $V_{k+1}^{\pi}(s) \leftarrow \sum T(s,\pi(s),s')[R(s,\pi(s),s') + \gamma V_k^{\pi}(s')]$
- Idea: Take samples of outcomes s' (by doing the action!) and average

$$sample_1 = R(s, \pi(s), s'_1) + \gamma V_k^{\pi}(s'_1)$$

 $sample_2 = R(s, \pi(s), s'_2) + \gamma V_k^{\pi}(s'_2)$
...

$$sample_n = R(s, \pi(s), s'_n) + \gamma V_k^{\pi}(s'_n)$$

$$V_{k+1}^{\pi}(s) \leftarrow \frac{1}{n} \sum_{i} sample_{i}$$

Temporal Difference Learning

- Big idea: learn from every experience!
 - Update V(s) each time we experience a transition (s, a, s', r)
 - · Likely outcomes s' will contribute updates more often

Move values toward value of whatever successor occurs: running average

Sample of V(s):
$$sample = R(s, \pi(s), s') + \gamma V^{\pi}(s')$$

Update to V(s): $V^{\pi}(s) \leftarrow (1-\alpha)V^{\pi}(s) + (\alpha)sample$

 $V^{\pi}(s) \leftarrow V^{\pi}(s) + \alpha(sample - V^{\pi}(s))$

Exponential Moving Average

- Exponential moving average
 - ullet The running interpolation update: $ar{x}_n = (1-lpha) \cdot ar{x}_{n-1} + lpha \cdot x_n$
 - Makes recent samples more important:

$$\bar{x}_n = \frac{x_n + (1-\alpha)\cdot x_{n-1} + (1-\alpha)^2\cdot x_{n-2} + \dots}{1+(1-\alpha)+(1-\alpha)^2+\dots}$$

- Forgets about the past (distant past values were wrong anyway)
- Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning States **Observed Transitions** B, east, C, -2 C, east, D, -2 Assume: γ = 1, α = 1/2 $V^{\pi}(s) \leftarrow (1 - \alpha)V^{\pi}(s) + \alpha \left[R(s, \pi(s), s') + \gamma V^{\pi}(s') \right]$

Problems with TD Value Learning

- TD value leaning is a model-free way to do policy evaluation, mimicking Bellman updates with running sample averages
- However, if we want to turn values into a (new) policy, we're sunk:

$$\pi(s) = \argmax_a Q(s,a)$$

$$Q(s, a) = \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V(s') \right]$$

- Idea: learn Q-values, not values
- Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

- Full reinforcement learning: optimal policies (like value iteration)
 - You don't know the transitions T(s,a,s')
 - You don't know the rewards R(s,a,s') • You choose the actions now
 - Goal: learn the optimal policy / values

- In this case:
 - Learner makes choices!
 - Fundamental tradeoff: exploration vs. exploitation
 - This is NOT offline planning! You actually take actions in the world and find out what happens...

Detour: Q-Value Iteration

- Value iteration: find successive (depth-limited) values
 Start with V₀(s) = 0, which we know is right
 Given V₀, calculate the depth k+1 values for all states:

$$V_{k+1}(s) \leftarrow \max_{a} \sum T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$$

$$w = \frac{1}{s'}$$

- But Q-values are more useful, so compute them instead
 Start with Q₀(s,a) = 0, which we know is right
 Given Q₀, calculate the depth k+1 q-values for all q-states:

$$Q_{k+1}(s,a) \leftarrow \sum_{s'} T(s,a,s') \left[R(s,a,s') + \gamma \max_{a'} Q_k(s',a') \right]$$

Q-Learning

• Q-Learning: sample-based Q-value iteration

$$Q_{k+1}(s, a) \leftarrow \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma \max_{a'} Q_k(s', a') \right]$$

- Learn Q(s,a) values as you go
 - Receive a sample (s,a,s',r)
 - Consider your old estimate: Q(s,a)
 - · Consider your new sample estimate:

$$sample = R(s, a, s') + \gamma \max_{a'} Q(s', a')$$

• Incorporate the new estimate into a running average: $Q(s,a) \leftarrow (1-\alpha)Q(s,a) + (\alpha) \left[sample\right]$

Q-Learning

- Forall s, aInitialize Q(s, a) = 0
- Repeat Forever

Where are you? s Choose some action a Execute it in real world: (s, a, r, s')

$$Q(s, a) \leftarrow (1 - \alpha)Q(s, a) + (\alpha) \left[r + \gamma \max_{a'} Q(s', a') \right]$$

Video of Demo Q-Learning -- Gridworld

Q-Learning Properties Amazing result: Q-learning converges to optimal policy -- even if you're acting suboptimally! This is called off-policy learning You have to explore enough You have to eventually make the learning rate

Caveats:

small enough ... but not decrease it too quickly

Basically, in the limit, it doesn't matter how you select actions (!)

Two main reinforcement learning approaches

- Model-based approaches:
- explore environment & learn model, T=P(s'|s,a) and R(s,a), (almost) everywhere
- use model to plan policy, MDP-style
- approach leads to strongest theoretical results
- often works well when state-space is manageable
- Model-free approach:
- don't learn a model; learn value function or policy directly
- weaker theoretical results
- often works better when state space is large

Two main reinforcement learning approaches Model-based approaches: |S|2|A| + |S||A| parameters (40,400) ■ Model-free approach: |S||A| parameters (400)

