CSE 473: Introduction to Artificial Intelligence
Reinforcement Learning

Based on Slides by Dan Klein and Pieter Abbeel

University of California, Berkeley

[These slides were created by Dan Kiein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai berkeley.edu.]

Reinforcement Learning

Reinforcement Learning

The “Credit Assignment” Problem

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

State:s

Reward: r Actions: a

= Basicidea:

I'm in state 43, reward =0, action =2

The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'min state 43, reward =0, action =2

‘39, " =0, =4

I'min state 43, reward =0, action =2
tott 3, © =0, * =4
< 22, “ =0, =1




The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'min state 43, reward =0, action =2
. “ 39, to=0, =4
<22, to=0, t =1
o2, Y=o, =1

I'm in state 43, reward =0, action =2
vt 3, to=0, =4
22, *o=0, =1
“o21, “ =0, * =1
- 21, *o=0, =

The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'min state 43, reward =0, action =2
. “ 39, to=0, =4
<22, vo=0, * =
e, vo=0, ¢
o2, *o=0, "
R © =0, ¢ =2

I'm in state 43, reward =0,
vt o3, “ =0,
v 22, * =0,
© 2, t =0,
<21, © =0,
©o g, © =0,
vt 54, t=0,

action =2
© g
=1
=1
‘oo
PR,

The “Credit Assignment” Problem

The “Credit Assignment” Problem

I'min state 43, reward =0, action =2

fotf 3, *o=0, ¢ =4
<22 © =0, ¢ =1

o2, to=0, ¢ =1
© 21 ©o=0, ¢ =
<13, <=0, ¢ =2

Cor s, ©o=0, ¢ =2
“ 26, “ =100,

Yippee! | got to a state with a big reward!
But which of my actions along the way
actually helped me get there??

This is the Credit Assignment problem.

I'min state 43, reward =0,
tott 3, ©o=0,

<22 *o=0,
Coee, ©o=0,
o2, <=0,

‘<13, ©o=0,
ot 54, to=0,
tot 95, “ =10,

Yippee! | got to a state with a big reward!
But which of my actions along the way
actually helped me get there??

This is the Credit Assignment problem.

action =2
< =4
=1
© =1
=1

PR




Exploration-Exploitation tradeoff

Example: Learning to Walk

= You have visited part of the state space and found a reward of 100
= is this the best you can hope for???

= Exploitation: should | stick with what | know and find a good policy w.r.t.
this knowledge?

= at risk of missing out on a better reward somewhere

= Exploration: should | look for states w/ more reward?
= at risk of wasting time & getting some negative reward

Initial

[Kohl and Stone, ICRA 2004]

-

F e

A Learning Trial After Learning [1K Trials]

Example: Learning to Walk

Example: Learning to Walk

Initial

[Kohl and Stone, ICRA 2004]

[Kohl and Stone, ICRA 2004]

Finished

The Crawler!

Video of Demo Crawler Bot

T~
|




Reinforcement Learning

Offline (MDPs) vs. Online (RL)

= Still assume a Markov decision process (MDP):
= Asetofstatessin$

= AsetofactionsainA 6
= A transition function T(s, a, s’) ¢
= Areward function R(s, a, s’) ®

= Still looking for a policy m(s)

= New twist: don’t know T or R

= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

N

S ad

Offline Solution

Online Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

Simplified task: policy evaluation

* Input: a fixed policy m(s)

® You don’t know the transitions T(s,a,s’)
® You don’t know the rewards R(s,a,s’)

= Goal: learn the state values

In this case:

= Learner is “along for the ride”

= No choice about what actions to take

= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Model-Based Learning

Model-Based Learning

= Model-Based Idea:
= Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each's, a
= Normalize to give an estimate of T'(s, a, s')
= Discover each R(s,a,s’) when we experience (s, a, s')

= Step 2: Solve the learned MDP
= For example, use value iteration, as before




Example: Model-Based Learning

Example: Expected Age

Input Policy

Assume:y =1

Observed Episodes (Training) Learned Model
Episode 1 Episode 2 T(s,a,s")
B, east, C, -1 B, east, C, -1 T(B, east, C) = 1.00
C,east, D, -1 C,east, D, -1 TIC, east, D) =0.75

D, exit, x, +10

D, exit, x. 410 T(C, east, A) = 0.25

Episode 3 Episode 4 R(s,a,s")
E, north, C, -1 E, north, C, -1 R(B, east, C) =-1
C,east, D,-1 C,east, A, -1 R(C, ea.s"

N N R(D, exit, X
D, exit, x, +10 A, exit, x,-10

Goal: Compute expected age of cs473 students

Known P(A)
E[A]=)"P(a)-a =035x20+...
a

1)
—_1J

Without P(A), instead collect samples [a;, @y, ... ay]

fUnknownPlA):”ModeI Based” \ / Unknown P(A): “Model Free” \
[ 1

Why does this 7o) aamn(a) Why does this

work? Because E[A] ~ lZa work? Because

eventually you . WI=N N samples appear
E[A]=Y" Pa)-a L

learn the right with the right
model. frequencies.

Model-Free Learning

Direct Evaluation

Goal: Compute values for each state under it

Idea: Average together observed sample values
= Actaccordingtom

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Example: Direct Evaluation

Problems with Direct Evaluation

Input Policy t

Assume: y=1

Observed Episodes (Training) Output Values
Episode 1 Episode 2

B, east, C, -1 B, east, C, -1

C,east, D, -1 C,east, D, -1

D, exit, x, +10 D, exit, x, +10

Episode 3 Episode 4
E, north, C, -1 E, north, C, -1
C,east, D, -1 C,east, A, -1

D, exit, x, +10 A, exit, x,-10

= What’s good about direct evaluation?
= |t’s easy to understand
= [t doesn’t require any knowledge of T, R
= |t eventually computes the correct average values,
using just sample transitions

Output Values

= What’s bad about it?
= It wastes information about state connections
= Each state must be learned separately
= So, it takes a long time to learn

IfBand E both go to C
under this policy, how can
their values be different?




Why Not Use Policy Evaluation?

Sample-Based Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policy:

s
= Each round, replace V with a one-step-look-ahead layer over V
m(s)
Vi(s)=0 s, m(s)
J 7 T /’ \\
ERORS S CLI O LCEOROESIZIC)) Rt AN
E s

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
= In other words, how do we take a weighted average without knowing the weights?

= We want to improve our estimate of V by computing these averages:
Vi 1(s) < Y T(s,m(s), s R(s, 7(s),s") + Vi (sN]

= |dea: Take sampr/es of outcomes s’ (by doing the action!) and average
sampley = R(s,w(s). 1) + Vi (1)
samplez = R(s,m(s),s5) + 1V (s5)

samplen = R(s,7(s), sh) + vV (sh)
Vi () « 23 sample;
n

Temporal Difference Learning

Exponential Moving Average

= Bigidea: learn from every experience!

= Update V(s) each time we experience a transition (s, a, s/, r)

m(s)
= Likely outcomes s’ will contribute updates more often
s, 1t(s)
= Temporal difference learning of values
= Policy still fixed, still doing evaluation! s

* Move values toward value of whatever successor occurs: running average
sample of V(s):  sample = R(s,7(s),s") +~V7(s)
Update to V(s): VT(s) + (1 — a)V™(s) + (a)sample

Same update: V7T (s) « V™(s) 4+ a(sample — V7(s))

= Exponential moving average
= The running interpolation update: 7, = (1 — ) Z, 1 + -z,

= Makes recent samples more important:

z

Tp+(1—a)- +(1—-a) -z
I+(1-a)+(1-a)?+...

P
Tp =

= Forgets about the past (distant past values were wrong anyway)

= Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

Problems with TD Value Learning

States Observed Transitions

[ B, east, C, -2 } [ C,east, D, -2 ]

e ] o]

Assume:y=1,a=1/2

VT(s) « (1 —a)V™(s) + a [R(s,7(s),s) +A,v*(.s')}

= TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

= However, if we want to turn values into a (new) policy, we’re sunk:
7(s) = argmaxQ(s,a)
a

Q(s,a) = > T(s,a,5") W\_“_ ) +V(s")

= |dea: learn Q-values, not values

= Makes action selection model-free too!




Active Reinforcement Learning

Active Reinforcement Learning

Al

= Full reinforcement learning: optimal policies (like value iteration)
® You don’t know the transitions T(s,a,s’)
® You don’t know the rewards R(s,a,s’) =
*® You choose the actions now
= Goal: learn the optimal policy / values

In this case:
= Learner makes choices!
= Fundamental tradeoff: exploration vs. exploitation

= This is NOT offline planning! You actually take actions in the world and
find out what happens...

Detour: Q-Value lteration

Q-Learning

= Value iteration: find successive (depth-limited) values
= Start with Vo(s) = 0, which we know is right
= Given Vj, calculate the depth k+1 values for all states:

Vit1(s) < maaxz T(s,a,s") [R(s, a,s') + v Vk(s/)]

= But Q-values are more useful, so compute them instead
= Start with Qu(s,a) = 0, which we know is right
= Given Q calculate the depth k+1 g-values for all g-states:

Quy1(s,0) « Y T(s,0,5) {R@, a,8) 47 maxQu(s',a)

= Q-Learning: sample-based Q-value iteration
Qry1(5,0) & X T(5,0,5) [R(s, a,5') +5 max Qu(s's a')]
s @
= Learn Q(s,a) values as you go
= Receive a sample (s,a,s’,r)
= Consider your old estimate: Q(s,a)
= Consider your new sample estimate:
sample = R(s,a,s") +ymaxQ(s',a’)

Incorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + (a) [sample]

Q-Learning

Video of Demo Q-Learning -- Gridworld

= Foralls, a
= Initialize Q(s,a) =0
= Repeat Forever
Where are you? s
Choose some action a
Execute it in real world: (s, a, r, )
Do update:

Q(s,a) — (1 —a)Q(s,a) + (a) [r‘ +v m{a)x Q(s',a")




Q-Learning Properties

Two main reinforcement learning approaches

= Amazing result: Q-learning converges to optimal policy -- even
if you're acting suboptimally!

= This is called off-policy learning

= Caveats:
= You have to explore enough
= You have to eventually make the learning rate
small enough ... but not decrease it too quickly —
= Basically, in the limit, it doesn’t matter how you select actions (!)

= Model-based approaches:

explore environment & learn model, T=P(s’|s,a) and R(s,a), (almost) everywhere

use model to plan policy, MDP-style
approach leads to strongest theoretical results
often works well when state-space is manageable

= Model-free approach:

don’t learn a model; learn value function or policy directly

= weaker theoretical results
= often works better when state space is large

The Story So Far: MDPs and RL

Two main reinforcement learning approaches

Known MDP: Offline Solution

Goal Technique
Compute V¥, Q*, * Value / policy iteration
L Evaluate a fixed policy Policy evaluation )
Unknown MDP: Model-Based Unknown MDP: Model-Free
Goal Technique Goal Technique
Compute V¥, Q*, * VI/PI on approx. MDP Compute V¥, Q*, * Q-learning
Evaluate a fixed policy t PE on approx. MDP Evaluate a fixed policy t  Value Learning )

= Model-based approaches:
Learn T+R

|S|2|A| +|S||A| parameters (40,400)

= Model-free approach:
Learn Q
|S||A] parameters (400)

Video of Demo Q-Learning Auto Cliff Grid




