
1

CSE	473:	Introduction	to	Artificial	Intelligence
Markov	Decision	Processes	II

Based	on	slides	by:	Dan	Klein	and	Pieter	Abbeel	--- University	of	California,	Berkeley
[These	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Solving	MDPs

§ Value	Iteration
§ Policy	Iteration

§ Reinforcement	Learning

Policy	Evaluation Fixed	Policies

§ Expectimax trees	max	over	all	actions	to	compute	the	optimal	values

§ If	we	fixed	some	policy	π	(s),	then	the	tree	would	be	simpler	– only	one	action	per	state
§ …	though	the	tree’s	value	would	depend	on	which	policy	we	fixed

a

s

s,	a

s,a,s’
s’

π	(s)

s

s,	π(s)

s, π(s),s’
s’

Do	the	optimal	action Do	what	π	says	to	do

Utilities	for	a	Fixed	Policy

§ Another	basic	operation:	compute	the	utility	of	a	state	s	
under	a	fixed	(generally	non-optimal)	policy

§ Define	the	utility	of	a	state	s,	under	a	fixed	policy	π:
Vπ (s)	=	expected	total	discounted	rewards	starting	in	s	and	following	π

§ Recursive	relation	(one-step	look-ahead	/	Bellman	equation):

π	(s)

s

s,	π(s)

s, π(s),s’
s’

Example:	Policy	Evaluation
Always	Go	Right Always	Go	Forward

2

Example:	Policy	Evaluation
Always	Go	Right Always	Go	Forward

Policy	Evaluation

§ How	do	we	calculate	the	V’s	for	a	fixed	policy	π?

§ Idea	1:	Turn	recursive	Bellman	equations	into	updates
(like	value	iteration)

§ Efficiency:	O(S2)	per	iteration

§ Idea	2:	Without	the	maxes,	the	Bellman	equations	are	just	a	linear	system
§ Solve	with	Matlab (or	your	favorite	linear	system	solver)

π	(s)

s

s,	π(s)

s, π(s),s’
s’

Policy	Iteration

§ Alternative	approach	for	optimal	values:
§ Step	1:	Policy	evaluation:	calculate	utilities	for	some	fixed	policy	(not	optimal	
utilities!)	until	convergence

§ Step	2:	Policy	improvement:	update	policy	using	one-step	look-ahead	with	resulting	
converged	(but	not	optimal!)	utilities	as	future	values

§ Repeat	steps	until	policy	converges

§ This	is	policy	iteration
§ It’s	still	optimal!	Can	converge	(much)	faster	under	some	conditions

Comparison

§ Both	value	iteration	and	policy	iteration	compute	the	same	thing	(all	optimal	values)

§ In	value	iteration:
§ Every	iteration	updates	both	the	values	and	(implicitly)	the	policy
§ We	don’t	track	the	policy,	but	taking	the	max	over	actions	implicitly	recomputes it

§ In	policy	iteration:
§ We	do	several	passes	that	update	utilities	with	fixed	policy	(each	pass	is	fast	because	we	

consider	only	one	action,	not	all	of	them)
§ After	the	policy	is	evaluated,	a	new	policy	is	chosen	(slow	like	a	value	iteration	pass)
§ The	new	policy	will	be	better	(or	we’re	done)

§ Both	are	dynamic	programs	for	solving	MDPs

Summary:	MDP	Algorithms

§ So	you	want	to….
§ Compute	optimal	values:	use	value	iteration	or	policy	iteration
§ Compute	values	for	a	particular	policy:	use	policy	evaluation
§ Turn	your	values	into	a	policy:	use	policy	extraction	(one-step	lookahead)

§ These	all	look	the	same!
§ They	basically	are	– they	are	all	variations	of	Bellman	updates
§ They	all	use	one-step	lookahead expectimax fragments
§ They	differ	only	in	whether	we	plug	in	a	fixed	policy	or	max	over	actions

Manipulator	Control

Arm with two joints (workspace) Configuration space

3

Manipulator	Control	Path

Arm with two joints (workspace) Configuration space

Manipulator	Control	Path

Arm with two joints (workspace) Configuration space

Double	Bandits Double-Bandit	MDP

§ Actions:	Blue,	Red
§ States:	Win,	Lose

W L
$1

1.0

$1

1.0

0.25	 $0

0.75	
$2

0.75	 $2

0.25	
$0

No	discount
100	time	steps
Both	states	have	
the	same	value

Offline	Planning

§ Solving	MDPs	is	offline	planning
§ You	determine	all	quantities	through	computation
§ You	need	to	know	the	details	of	the	MDP
§ You	do	not	actually	play	the	game!

Play	Red

Play	Blue

Value

No	discount
100	time	steps
Both	states	have	
the	same	value

150

100

W L
$1

1.0

$1

1.0

0.25	 $0

0.75	
$2

0.75	 $2

0.25	
$0

Let’s	Play!

$2 $2 $0 $2 $2
$2 $2 $0 $0 $0

4

Online	Planning

§ Rules	changed!		Red’s	win	chance	is	different.

W L
$1

1.0

$1

1.0

??	 $0

??	
$2

??	 $2

??	
$0

Let’s	Play!

$0 $0 $0 $2 $0
$2 $0 $0 $0 $0

What	Just	Happened?

§ That	wasn’t	planning,	it	was	learning!
§ Specifically,	reinforcement	learning
§ There	was	an	MDP,	but	you	couldn’t	solve	it	with	just	computation
§ You	needed	to	actually	act	to	figure	it	out

§ Important	ideas	in	reinforcement	learning	that	came	up
§ Exploration:	you	have	to	try	unknown	actions	to	get	information
§ Exploitation:	eventually,	you	have	to	use	what	you	know
§ Regret:	even	if	you	learn	intelligently,	you	make	mistakes
§ Sampling:	because	of	chance,	you	have	to	try	things	repeatedly
§ Difficulty:	learning	can	be	much	harder	than	solving	a	known	MDP

Next	Time:	Reinforcement	Learning!

