Non-Deterministic Search

Example: Grid World

- A maze-like problem
- Walls block the agent's path
- Noisy movement: actions do not always go as planned
- Some of the time, the action North takes the agent North
- Some of the time, North takes the agent West; 10% East
- If there is a wall in the direction the agent would have been taken, the agent stays put
- The agent receives rewards each time step
 - Small "living" reward each step (can be negative)
 - Big rewards come at the end (good or bad)
- Goal: maximize sum of rewards

Grid World Actions

Markov Decision Processes

- An MDP is defined by:
 - A set of states S in S
 - A set of actions A
 - A transition function $T(s, a, s')$:
 - Probability that a from state s leads to state s', i.e., $P(s' | s, a)$
 - Also called the model or the dynamics

\[
T(s_1, E, s_2) = 0.8
\]
\[
T(s_2, N, s_1) = 0.1
\]
\[
T(s_3, N, s_4) = 0.1
\]

- A reward function $R(s, a, s')$:

\[
R(s_1, N, s_2) = -0.01
\]
\[
R(s_2, N, s_3) = 1.01
\]
\[
R(s_3, E, s_4) = 0.99
\]

For now, we give this as input to the agent
Markov Decision Processes

- An MDP is defined by:
 - A set of states in S
 - A set of actions a in A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')

- A start state
- Maybe a terminal state

MDPs are non-deterministic search problems
- One way to solve them is with expectimax search
- We’ll have a new tool soon

What is Markov about MDPs?

- “Markov” generally means that given the present state, the future and the past are independent
- For Markov decision processes, “Markov” means action outcomes depend only on the current state
 \[P(s_{t+1} = s' | s_t, a_t) = P(s_{t+1} = s' | s_t) \]
- This is just like search, where the successor function could only depend on the current state (not the history)

Policies

- In deterministic single-agent search problems, we wanted an optimal plan, or sequence of actions, from start to a goal
- For MDPs, we want an optimal policy \(\pi^* : S \rightarrow A \)
 - A policy \(\pi \) gives an action for each state
 - An optimal policy is one that maximizes expected utility if followed
 - An explicit policy defines a reflex agent
- Expectimax didn’t compute entire policies
 - It computed the action for a single state only

Optimal Policies

- An MDP is defined by:
 - A set of states in S
 - A set of actions a in A
 - A transition function T(s, a, s')
 - Probability that a from s leads to s', i.e., P(s' | s, a)
 - Also called the model or the dynamics
 - A reward function R(s, a, s')
 - Sometimes just R(s) or R(s')

- A terminal state
- Maybe a start state

Optimal policy when \(R(s, a, s') = -0.03 \)
for all non-terminals s

Example: Racing

- Optimal Policies
- Example: Racing

- Optimal Policies
- Example: Racing

- Optimal Policies
- Example: Racing
Example: Racing

- A robot car wants to travel far, quickly
- Three states: Cool, Warm, Overheated
- Two actions: Slow, Fast
- Going faster gets double reward

Racing Search Tree

MDP Search Trees

Utilities of Sequences

- What preferences should an agent have over reward sequences?
- More or less? \[1, 2, 2\] or \[2, 3, 4\]
- Now or later? \[0, 0, 1\] or \[1, 0, 0\]

Discounting

- It’s reasonable to maximize the sum of rewards
- It’s also reasonable to prefer rewards now to rewards later
- One solution: values of rewards decay exponentially

Utilities of Sequences

Discounting
Discounting

- **How to discount?**
 - Each time we descend a level, we multiply in the discount once.
- **Why discount?**
 - Sooner rewards probably do have higher utility than later rewards.
 - Also helps our algorithms converge.
- **Example:** Discount of 0.5
 - $U(1,2,3) = 1 \times 1 + 0.5 \times 2 + 0.25 \times 3$
 - $U([1,2,3]) < U([3,2,1])$

Stationary Preferences

- **Theorem:** If we assume stationary preferences:
 - $[a_1, a_2, \ldots] \succ [b_1, b_2, \ldots]$
 - $[r, a_1, a_2, \ldots] \succ [r, b_1, b_2, \ldots]$
 - Then: there are only two ways to define utilities
 - Additive utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + r_1 + r_2 + \cdots$
 - Discounted utility: $U([r_0, r_1, r_2, \ldots]) = r_0 + \gamma r_1 + \gamma^2 r_2 + \cdots$

Quiz: Discounting

- **Given:**
 - $\gamma = 1$
 - Actions: East, West, and Exit (only available in exit states a, e)
 - Transitions: deterministic
 - $10 \times 1 = 10$
 - $10 + \gamma = 10$
- **Quiz 1:** For $\gamma = 1$, what is the optimal policy?
 - $10 \uparrow 1$
- **Quiz 2:** For $\gamma = 0.1$, what is the optimal policy?
 - $10 \uparrow 1$
- **Quiz 3:** For which γ are West and East equally good when in state d?
 - $10 \uparrow 1$

Infinite Utilities?!

- **Problem:** What if the game lasts forever? Do we get infinite rewards?
- **Solutions:**
 - Finite horizon: (similar to depth-limited search)
 - Terminate episodes after a fixed T steps (e.g., life)
 - Given nonstationary policy (γ depends on time left)
 - Discounting: use $0 < \gamma < 1$
 - $\frac{1}{1-\gamma} \leq \frac{1}{\gamma} \frac{1}{1-\gamma}$
 - Smaller γ means smaller "horizon" – shorter term focus
 - Absorbing state: guarantee that for every policy, a terminal state will eventually be reached (like "overheated" for racing)

Recap: Defining MDPs

- **Markov decision processes:**
 - Set of states S
 - Start state s_0
 - Set of actions A
 - Transitions $P_t(s, a)$ (or $T(s, a, s')$)
 - Rewards $R(s, a, s')$ (and discount γ)
- **MDP quantities so far:**
 - Policy: Choice of action for each state
 - Utility: sum of (discounted) rewards

Solving MDPs

- **Value Iteration**
- **Policy Iteration**
- **Reinforcement Learning**
Optimal Quantities

- The value (utility) of a state \(s \):
 \[V^*(s) = \text{expected utility starting in } s \text{ and acting optimally} \]

- The value (utility) of a q-state \((s,a)\):
 \[Q^*(s,a) = \text{expected utility starting out having taken action } a \text{ from state } s \text{ and (thereafter) acting optimally} \]

- The optimal policy:
 \[\pi^*(s) = \text{optimal action from state } s \]

Snapshot of Demo – Gridworld V Values

Snapshot of Demo – Gridworld Q Values

Values of States

- Fundamental operation: compute the (expectimax) value of a state
 - Expected utility under optimal action
 - Average sum of (discounted) rewards
 - This is just what expectimax computed!

- Recursive definition of value:
 \[V^*(s) = \max_a Q^*(s,a) \]
 \[Q^*(s,a) = \sum_s T(s,a,s') [R(s,a,s') + \gamma V^*(s')] \]
 \[V^*(s) = \max_a \sum_s T(s,a,s') [R(s,a,s') + \gamma V^*(s')] \]

Racing Search Tree

- We’re doing way too much work with expectimax?
- Problem: States are repeated
 - Idea: Only compute needed quantities once

- Problem: Tree goes on forever
 - Idea: Do a depth-limited computation, but with increasing depths until change is small
 - Note: deep parts of the tree eventually don’t matter if \(\gamma < 1 \)
Time-Limited Values

- Key idea: time-limited values
- Define $V_k(s)$ to be the optimal value of s if the game ends in k more time steps.
- Equivalently, it’s what a depth-k expectimax would give from s.

Computing Time-Limited Values

Value Iteration

The Bellman Equations

- Definition of “optimal utility” via expectimax recurrence gives a simple one-step lookahead relationship amongst optimal utility values:
 - $V^*(s) = \max_a Q^*(s, a)$
 - $Q^*(s, a) = \sum_s T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$
 - $V^*(s) = \max_a \sum_s T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$
- These are the Bellman equations, and they characterize optimal values in a way we’ll use over and over.

The Bellman Equations

- Bellman equations characterize the optimal values:
 - $V^*(s) = \max_a \sum_s T(s, a, s') \left[R(s, a, s') + \gamma V^*(s') \right]$
- Value iteration computes them:
 - $V_{k+1}(s) = \max_a \sum_s T(s, a, s') \left[R(s, a, s') + \gamma V_k(s') \right]$
- Value iteration is just a fixed point solution method:
 - ... though the V_k vectors are also interpretable as time-limited values.

Value Iteration
Value Iteration Algorithm

- Start with $V_0(s) = 0$.
- Given vector of $V_k(s)$ values, do one ply of expectimax from each state:
 $$V_{k+1}(s) = \max_a \sum_t R(s, a, s') \cdot (1 - \gamma) V_k(s')$$
- Repeat until convergence
- Complexity of each iteration: $O(S^2A)$
- Number of iterations: poly(|S|, |A|, 1/(1-\gamma))
- Theorem: will converge to unique optimal values

k=0

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

VALUES AFTER 0 ITERATIONS

k=1

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

VALUES AFTER 1 ITERATIONS

k=2

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.73</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>-1.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

VALUES AFTER 2 ITERATIONS

k=3

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.00</td>
<td>0.52</td>
<td>0.78</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.43</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

VALUES AFTER 3 ITERATIONS

k=4

<p>| | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.37</td>
<td>0.36</td>
<td>0.93</td>
<td>1.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.51</td>
<td>-1.00</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.31</td>
<td>0.00</td>
</tr>
<tr>
<td></td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
<td>0.00</td>
</tr>
</tbody>
</table>

VALUES AFTER 4 ITERATIONS

Noise = 0.2
Discount = 0.9
Living reward = 0
Computing Actions from Values

- Let’s imagine we have the optimal values $V^*(s)$
- How should we act?
 - It’s not obvious!
- We need to do a mini-expectimax (one step)

$$
\pi^*(s) = \arg \max_{a} \sum_{s'} P(s, a, s') R(s, a, s') + \gamma V^*(s')
$$
- This is called policy extraction, since it gets the policy implied by the values

Computing Actions from Q-Values

- Let’s imagine we have the optimal q values:
- How should we act?
 - Completely trivial to decide!

$$
\pi^*(s) = \arg \max_{a} Q^*(s, a)
$$
- Important lesson: actions are easier to select from q-values than values!
Problems with Value Iteration

- Value iteration repeats the Bellman updates:
 \[V_{k+1}(s) = \max_a \sum_{s'} T(s, a, s') \left[\beta(s', a') + \gamma V_k(s') \right] \]
- Problem 1: It’s slow – \(O(S^2A)\) per iteration
- Problem 2: The “max” at each state rarely changes
- Problem 3: The policy often converges long before the values

VI \(\rightarrow\) Asynchronous VI

- Is it essential to back up all states in each iteration?
 - No!
- States may be backed up
 - many times or not at all
 - in any order
- As long as no state gets starved…
 - convergence properties still hold!!

Asynch VI: Prioritized Sweeping

- Why backup a state if values of successors same?
- Prefer backing a state
 - whose successors had most change
- Priority Queue of (state, expected change in value)
- Backup in the order of priority
- After backing a state update priority queue
 - for all predecessors