CSE 473: Artificial Intelligence

Constraint Satisfaction

Dieter Fox

Based on slides adapted Luke Zettlemoyer, Dan Klein, Stuart Russell or Andrew Moore

What is Search For?

- Models of the world: single agent, deterministic actions, fully observed state, discrete state space

- Planning: sequences of actions
 - The path to the goal is the important thing
 - Paths have various costs, depths
 - Heuristics to guide, fringe to keep backups

- Identification: assignments to variables
 - The goal itself is important, not the path
 - All paths at the same depth (for some formulations)
 - CSPs are specialized for identification problems

Constraint Satisfaction Problems

- Standard search problems:
 - State is a "black box": arbitrary data structure
 - Goal test: any function over states
 - Successor function can be anything

- Constraint satisfaction problems (CSPs):
 - A special subset of search problems
 - State is defined by variables \(X_i \) with values from a domain \(D \) (sometimes \(D \) depends on \(i \))
 - Goal test is a set of constraints specifying allowable combinations of values for subsets of variables

- Simple example of a formal representation language

- Allows useful general-purpose algorithms with more power than standard search algorithms

Example: N-Queens

- Formulation 1:
 - Variables: \(X_{ij} \)
 - Domains: \{0, 1\}
 - Constraints:
 - \(\forall i, j, k \ (X_{ij}, X_{jk}) \in \{(0,0),(0,1),(1,0)\} \)
 - \(\forall i, j, k \ (X_{ij}, X_{kj}) \in \{(0,0),(0,1),(1,0)\} \)
 - \(\forall i, j, k \ (X_{ij}, X_{i+k,j+k}) \in \{(0,0),(0,1),(1,0)\} \)
 - \(\sum_{i,j} X_{ij} = N \)

- Note: need to make sure that constraints refer to different squares

Example: Map-Coloring

- Variables: \(WA, NT, Q, NSW, V, SA, T \)
- Domain: \(D = \{red, green, blue\} \)
- Constraints: adjacent regions must have different colors
 - \(WA \neq NT \)
 - \((WA, NT) \in \{(red,green), (red,blue), (green,red),\ldots\} \)
- Solutions are assignments satisfying all constraints, e.g.:
 - \(WA = red, NT = green, Q = red, NSW = green, V = red, SA = blue, T = green \)
Constraint Graphs

- Binary CSP: each constraint relates (at most) two variables
- Binary constraint graph: nodes are variables, arcs show constraints
- General-purpose CSP algorithms use the graph structure to speed up search. E.g., Tasmania is an independent subproblem!

Example: Cryptarithmetic

- Variables (circles):
 \[F \ T \ U \ W \ R \ O \ X_1 \ X_2 \ X_3 \]
- Domains:
 \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}
- Constraints (boxes):
 \[\text{alldiff}(F, T, U, W, R, O) \]
 \[O + O = R + 10 \cdot X_1 \]
 ...

Example: Sudoku

- Variables:
 - Each (open) square
- Domains:
 \{1,2,...,9\}
- Constraints:
 - 9-way alldiff for each column
 - 9-way alldiff for each row
 - 9-way alldiff for each region

Varieties of CSPs

- Discrete Variables
 - Finite domains
 - Size \(n \) means \(O(n^d) \) complete assignments
 - E.g., Boolean CSPs, including Boolean satisfiability (NP-complete)
 - Infinite domains (integers, strings, etc.)
 - E.g., job scheduling, variables are start/end times for each job
 - Linear constraints solvable, nonlinear undecidable

- Continuous variables
 - E.g., start/end times for Hubble Telescope observations
 - Linear constraints solvable in polynomial time by LP methods

Varieties of Constraints

- Varieties of Constraints
 - Unary constraints involve a single variable (equiv. to shrinking domains):
 \[SA \neq \text{green} \]
 - Binary constraints involve pairs of variables:
 \[SA \neq WA \]
 - Higher-order constraints involve 3 or more variables:
 e.g., cryptarithmetic column constraints
 - Preferences (soft constraints):
 - E.g., red is better than green
 - Often representable by a cost for each variable assignment
 - Gives constrained optimization problems
 - (We’ll ignore these until we get to Bayes’ nets)

Real-World CSPs

- Assignment problems: e.g., who teaches what class
- Timetabling problems: e.g., which class is offered when and where?
- Hardware configuration
- Transportation scheduling
- Factory scheduling
- Floorplanning
- Fault diagnosis
- ... lots more!
- Many real-world problems involve real-valued variables...
Standard Search Formulation

- Standard search formulation of CSPs (incremental)
- Let's start with a straightforward, dumb approach, then fix it
- States are defined by the values assigned so far
 - Initial state: the empty assignment, {}.
 - Successor function: assign a value to an unassigned variable.
 - Goal test: the current assignment is complete and satisfies all constraints.

Search Methods

- What does BFS do?
- What does DFS do?

Backtracking Search

- Idea 1: Only consider a single variable at each point
 - Variable assignments are commutative, so fix ordering.
 - I.e., [WA = red then NT = green] same as [NT = green then WA = red].
 - Only need to consider assignments to a single variable at each step.
 - How many leaves are there?
- Idea 2: Only allow legal assignments at each point
 - I.e., consider only values which do not conflict previous assignments.
 - Might have to do some computation to figure out whether a value is ok.
 - 'Incremental goal test'.
- Depth-first search for CSPs with these two improvements is called backtracking search.
- Backtracking search is the basic uninformed algorithm for CSPs.
- Can solve n-queens for n \approx 25.

Backtracking Example
Improving Backtracking

- General-purpose ideas give huge gains in speed
- **Ordering:**
 - Which variable should be assigned next?
 - In what order should its values be tried?
- **Filtering:** Can we detect inevitable failure early?
- **Structure:** Can we exploit the problem structure?

Forward Checking

- **Idea:** Keep track of remaining legal values for unassigned variables (using immediate constraints)
- **Idea:** Terminate when any variable has no legal values

Backtracking

Are we done?

Forward Checking

Are We Done?
Constraint Propagation

- Forward checking propagates information from assigned to adjacent unassigned variables, but doesn’t detect more distant failures:
 - NT and SA cannot both be blue!
 - Why didn’t we detect this yet?
 - Constraint propagation repeatedly enforces constraints (locally)

Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - \(X \rightarrow Y \) is consistent if for every value of \(X \) there is some allowed value of \(Y \)

- If \(X \) loses a value, all pairs \(Z \rightarrow X \) need to be rechecked
Arc consistency

- Simplest form of propagation makes each pair of variables consistent:
 - $X \rightarrow Y$ is consistent iff for every value of X there is some allowed value of Y
 - When checking $X \rightarrow Y$, throw out any values of X for which there isn’t an allowed value of Y

- Arc consistency detects failure earlier than forward checking
- Can be run before or after each assignment

Arc Consistency

- Runtime: $O(nd^3)$, can be reduced to $O(n^2d^2)$
- ... but detecting all possible future problems is NP-hard – why?

Limitations of Arc Consistency

- After running arc consistency:
 - Can have one solution left
 - Can have multiple solutions left
 - Can have no solutions left (and not know it)
K-Consistency*

- Increasing degrees of consistency
 - 1-Consistency (Node Consistency): Each single node's domain has a value which meets that node's unary constraints
 - 2-Consistency (Arc Consistency): For each pair of nodes, any consistent assignment to one can be extended to the other
 - K-Consistency: For each k nodes, any consistent assignment to k-1 can be extended to the kth node.

- Higher k more expensive to compute
- (You need to know the k=2 algorithm)

Ordering: Minimum Remaining Values

- Minimum remaining values (MRV):
 - Choose the variable with the fewest legal values

- Why min rather than max?
- Also called “most constrained variable”
- “Fail-fast” ordering

Ordering: Degree Heuristic

- Tie-breaker among MRV variables
- Degree heuristic:
 - Choose the variable participating in the most constraints on remaining variables

- Why most rather than fewest constraints?

Ordering: Least Constraining Value

- Given a choice of variable:
 - Choose the least constraining value
 - The one that rules out the fewest values in the remaining variables
 - Note that it may take some computation to determine this!

- Why least rather than most?
- Combining these heuristics makes 1000 queens feasible

Problem Structure

- Tasmania and mainland are independent subproblems
- Identifiable as connected components of constraint graph
- Suppose each subproblem has c variables out of n total
- Worst-case solution cost is $O(n/c)(d^c)$, linear in n
 - E.g., n = 80, d = 2, c = 20
 - $2^{20} = 4$ billion years at 10 million nodes/sec
 - $(4)(2^{20}) = 0.4$ seconds at 10 million nodes/sec

Tree-Structured CSPs

- Choose a variable as root, order variables from root to leaves such that every node’s parent precedes it in the ordering
Tree-Structured CSPs

- Algorithm for tree-structured CSPs:
 - Order: Choose a root variable, order variables so that parents precede children
 - Remove backward:
 For $i = n : 2$, apply RemoveInconsistent(Parent(X_i), X_i)
 - Assign forward:
 For $i = 1 : n$, assign X_i consistently with Parent(X_i)
 - Runtime: $O(n d^2)$ (why?)

Nearly Tree-Structured CSPs

- Conditioning: instantiate a variable, prune its neighbors’ domains
- Cutset conditioning: instantiate (in all ways) a set of variables such that the remaining constraint graph is a tree
- Cutset size c gives runtime $O((d^c)(n-c)d^2)$, very fast for small c

Cutset Conditioning

1. Choose a cutset
2. Instantiate the cutset (all possible ways)
3. Compute residual CSP for each assignment
4. Solve the residual CSPs (tree structured)

Iterative Algorithms for CSPs

- Greedy and local methods typically work with “complete” states, i.e., all variables assigned
- To apply to CSPs:
 - Allow states with unsatisfied constraints
 - Operators reassign variable values
- Variable selection: randomly select any conflicted variable
- Value selection by min-conflicts heuristic:
 - Choose value that violates the fewest constraints
 - I.e., hill climb with $h(n) = $ total number of violated constraints

Example: 4-Queens

- States: 4 queens in 4 columns ($4^4 = 256$ states)
- Operators: move queen in column
- Goal test: no attacks
- Evaluation: $h(n) =$ number of attacks

Performance of Min-Conflicts

- Given random initial state, can solve n-queens in almost constant time for arbitrary n with high probability (e.g., $n = 10,000,000$)
- The same appears to be true for any randomly-generated CSP except in a narrow range of the ratio

$$R = \frac{\text{number of constraints}}{\text{number of variables}}$$
Summary

- CSPs are a special kind of search problem:
 - States defined by values of a fixed set of variables
 - Goal test defined by constraints on variable values
- Backtracking = depth-first search with one legal variable assigned per node
- Variable ordering and value selection heuristics help significantly
- Forward checking prevents assignments that guarantee later failure
- Constraint propagation (e.g., arc consistency) does additional work to constrain values and detect inconsistencies
- The constraint graph representation allows analysis of problem structure
- Tree-structured CSPs can be solved in linear time
- Iterative min-conflicts is usually effective in practice

Local Search

- Tree search keeps unexplored alternatives on the fringe (ensures completeness)
- Local search: improve a single option until you can’t make it better (no fringe!)
- New successor function: local changes
- Generally much faster and more memory efficient (but incomplete and suboptimal)

Hill Climbing

- Simple, general idea:
 - Start wherever
 - Repeat: move to the best neighboring state
 - If no neighbors better than current, quit
- What’s bad about this approach?
 - Complete?
 - Optimal?
- What’s good about it?

Hill Climbing Diagram

- Starting from X, where do you end up?
- Starting from Y, where do you end up?
- Starting from Z, where do you end up?
Simulated Annealing

- **Idea**: Escape local maxima by allowing downhill moves
 - But make them rarer as time goes on

```plaintext
function SIMULATED-ANNEALING(problem, schedule) returns a solution state
  input: problem, a problem
          schedule, a mapping from time to "temperature"
  local variables: current, a node
                   T, a "temperature" controlling prob. of downhill steps
  current ← MAKE-NODE(INITIAL-SOLUTION)  // solve!
  for t ← 1 to MAX-TEMP do
     if T = 0 then return current  // if current is the optimal solution
     next ← a randomly selected successor of current
     ΔE ← VALUE(next) - VALUE(current)
     if ΔE ≥ 0 then current ← next  // if the new solution is better
     else current ← next with probability e^(-ΔE/T)
```

- **Theoretical guarantee**:
 - Stationary distribution: \(p(x) \propto e^{-E(x)/T} \)
 - If \(T \) decreased slowly enough, will converge to optimal state!

- Is this an interesting guarantee?
 - Sounds like magic, but reality is reality:
 - The more downhill steps you need to escape a local optimum, the less likely you are to ever make them all in a row
 - People think hard about **ridge operators** which let you jump around the space in better ways

Genetic Algorithms

- Genetic algorithms use a natural selection metaphor
 - Keep best N hypotheses at each step (selection) based on a fitness function
 - Also have pairwise crossover operators, with optional mutation to give variety
 - Possibly the most misunderstood, misapplied (and even maligned) technique around

- Example: N-Queens
 - Why does crossover make sense here?
 - When wouldn’t it make sense?
 - What would mutation be?
 - What would a good fitness function be?

GA’s for Locomotion

Ever wonder what it would be like to see evolution happening right before your eyes?