CE 473: Artificial Intelligence
Spring 2017

A* Search

Dieter Fox
Based on slides from Pieter Abbeel & Dan Klein
Multiple slides from Stuart Russell, Andrew Moore, Luke Zettlemoyer

Today

- A* Search
- Heuristic Design
- Graph search

Example: Pancake Problem

Action: Flip over the top \(n \) pancakes

State space graph with costs as weights

Example: Pancake Problem

Cost: Number of pancakes flipped

Example: Pancake Problem

General Tree Search

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

Action: Flip top two
Cost: 2

Path to reach goal: Flip four, flip three
Total cost: 7
Example: Heuristic Function

Heuristic: the largest pancake that is still out of place

What is a Heuristic?

- An estimate of how close a state is to a goal
- Designed for a particular search problem

Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

Greedy Search

- Strategy: expand a node that you think is closest to a goal state
 - Heuristic: estimate of distance to nearest goal for each state
- A common case:
 - Best-first takes you straight to the (wrong) goal
- Worst-case: like a badly-guided DFS

What can go wrong?
A* Search

Combining UCS and Greedy

- Uniform-cost orders by path cost, or backward cost $g(n)$
- Greedy orders by goal proximity, or forward cost $h(n)$

- A^* Search orders by the sum: $f(n) = g(n) + h(n)$

Example: Tag Grenager

When should A^* terminate?

- Should we stop when we enqueue a goal?
- No: only stop when we dequeue a goal

Is A^* Optimal?

- What went wrong?
- Actual bad goal cost < estimated good path cost
- We need estimates to be less than or equal to actual costs!

Admissible Heuristics

- A heuristic h is admissible (optimistic) if:
 \[0 \leq h(n) \leq h^*(n) \]

 where $h^*(n)$ is the true cost to a nearest goal

- Examples:
 \[4 \]

- Coming up with admissible heuristics is most of what’s involved in using A^* in practice.

Optimality of A^* Tree Search

Assume:
- A is an optimal goal node
- B is a suboptimal goal node
- h is admissible

Claim:
- A will exit the fringe before B
Optimality of A* Tree Search

Proof:
- Imagine B is on the fringe
- Some ancestor n of A is on the fringe, too (maybe A!)
- Claim: n will be expanded before B
 1. $f(n)$ is less or equal to $f(A)$
 2. $f(A)$ is less than $f(B)$

Definition of f
- $f(n) = g(n) + h(n)$
- $f(n) \leq g(A)\ldots$ (Admissibility of h)
 - $h = 0$ at a goal

UCS vs A* Contours

- Uniform-cost expanded in all directions
- A* expands mainly toward the goal, but hedges its bets to ensure optimality

Which Algorithm?

- Uniform cost search (UCS):
- A*, Manhattan Heuristic:
Creating Admissible Heuristics
- Most of the work in solving hard search problems optimally is in coming up with admissible heuristics
- Often, admissible heuristics are solutions to relaxed problems, where new actions are available
- Inadmissible heuristics are often useful too

Creating Heuristics
- What are the states?
- How many states?
- What are the actions?
- What states can I reach from the start state?
- What should the costs be?

8 Puzzle I
- Heuristic: Number of tiles misplaced
- $h(\text{start}) = 8$
- Is it admissible?
- Average nodes expanded when optimal path has length:
 - 4 steps: 112
 - 8 steps: 6,300
 - 12 steps: 3.6×10^6
- UCS: 112
- TILES: 13
- MANHATTAN: 12

8 Puzzle II
- What if we had an easier 8-puzzle where any tile could slide any direction at any time, ignoring other tiles?
- Total Manhattan distance
- $h(\text{start}) = 3 + 1 + 2 + \ldots = 18$
- Admissible?
- Average nodes expanded when optimal path has length:
 - 4 steps: 13
 - 8 steps: 39
 - 12 steps: 227
 - TILES: 13
 - MANHATTAN: 12

8 Puzzle III
- How about using the actual cost as a heuristic?
- Would it be admissible?
- Would we save on nodes expanded?
- What’s wrong with it?
- With A*: a trade-off between quality of estimate and work per node!
Trivial Heuristics, Dominance

- Dominance: \(h_a(n) \geq h_c(n) \) if
 \[\forall n : h_a(n) \geq h_c(n) \]
- Heuristics form a semi-lattice:
 - Max of admissible heuristics is admissible
 \[h(n) = \max(h_a(n), h_b(n)) \]
- Trivial heuristics
 - Bottom of lattice is the zero heuristic (what does this give us?)
 - Top of lattice is the exact heuristic

A* Applications

- Pathing / routing problems
- Resource planning problems
- Robot motion planning
- Language analysis
- Machine translation
- Speech recognition
- ...

Tree Search: Extra Work!

- Failure to detect repeated states can cause exponentially more work. Why?

Graph Search

- In BFS, for example, we shouldn't bother expanding some nodes (which, and why?)

Graph Search

- Idea: never expand a state twice
- How to implement:
 - Tree search + set of expanded states ("closed set")
 - Expand the search tree node-by-node, but...
 - Before expanding a node, check to make sure its state has never been expanded before
 - If not new, skip it, if new add to closed set
- Hint: in python, store the closed set as a set, not a list
- Can graph search wreck completeness? Why/why not?
- How about optimality?

A* Graph Search Gone Wrong
Consistency of Heuristics

- Main idea: estimated heuristic costs ≤ actual costs
- Admissibility: heuristic cost ≤ actual cost to goal
 \(h(A) \leq \text{actual cost from } A \text{ to } G \)
- Consistency: heuristic "arc" cost ≤ actual cost for each arc
 \(h(A) - h(C) \leq \text{cost}(A \text{ to } C) \)
- Consequences of consistency:
 - The f value along a path never decreases
 \(f(A) = g(A) + h(A) \leq g(A) + \text{cost}(A \text{ to } C) + h(C) = f(C) \)

Optimality of A* Graph Search

- Sketch: consider what A* does with a consistent heuristic:
 - Nodes are popped with non-decreasing f-scores: for all \(n, n' \) with \(n' \) popped after \(n \):
 \(f(n') \geq f(n) \)
 - Proof by induction: (1) always pop the lowest f-score from the fringe, (2) all new nodes have larger (or equal) scores, (3) add them to the fringe, (4) repeat!
 - For every state \(s \), nodes that reach \(s \) optimally are expanded before nodes that reach \(s \) sub-optimally
 - Result: A* graph search is optimal

Optimality

- Tree search:
 - A* optimal if heuristic is admissible (and non-negative)
 - UCS is a special case (\(h = 0 \))
- Graph search:
 - A* optimal if heuristic is consistent
 - UCS optimal (\(h = 0 \) is consistent)
- Consistency implies admissibility
- In general, natural admissible heuristics tend to be consistent, especially if from relaxed problems

Summary: A*

- A* uses both backward costs and (estimates of) forward costs
- A* is optimal with admissible / consistent heuristics
- Heuristic design is key: often use relaxed problems