3/29/17

CE 473: Artificial Intelligence
Spring 2017
A* Search

Based on slides from Pieter Abbeel & Dan Klein
Multiple slides from Stuart Russell, Andrew Moore, Luke Zettlemoyer

Today

= A* Search
= Heuristic Design

= Graph search

Example: Pancake Problem

Action: Flip over the
top n pancakes

Cost: Number of pancakes flipped

Example: Pancake Problem

BOUNDS FOR SORTING BY PREFIX REVERSAL

William H. GATES

Microsoft, Albuquerque, New Mexico

Christos H. PAPADIMITRIOU*T
Department of Electrical Engineering, University of California, Berkeley, CA 94720, U.S.A.

Received 18 January 1978
Revised 28 August 1978

For a permutation o of the integers from 1 to n, let f(a) be the smallest number of prefix
reversals that will transform o to the identity permutation, and let f(n) be the largest such f(o)
for all o in (the symmetric group) S,. We show that f(n) < (5n +5)/3, and that f(n)=17n/16 for
n a multiple of 16. If, furthermore, cach integer is required to participate in an even number of
reversed prefixes, the corresponding function g(n) is shown to obey 3n/2—1=g(n)=2n+3,

Example: Pancake Problem

State space graph with costs as weights

General Tree Search

function TREE-SEARCH(problem, strategy) returns a solution, or failure
initialize the search tree using the initial state of problem

loop do
if there are no candidates for expansion then return failure
choose a leaf node for expansion according to strategy
if the node contains a goal state then return the corresponding solution
else expand the node and add the resulting nodes to the search tree

end

Action: flip toj
twop ’ { Path to reach goal:
Cost: 2 — Flip four, flip three
/ | Z Total cost: 7

R SN

Example: Heuristic Function

3/29/17

Heuristic: the largest pancake that is still out of place

4:/37— h(x)
4 S T/~
7\ 3 — 0 —
4:
4 = ~ /3\:
) 4

What is a Heuristic?

= An estimate of how close a state is to a goal
= Designed for a particular search problem

= Examples: Manhattan distance: 10+5 = 15
Euclidean distance: 11.2

Greedy Search

Best First (Greedy)

= Strategy: expand a node
that you think is closest to
a goal state
= Heuristic: estimate of
distance to nearest goal for
each state

= A common case:

= Best-first takes you straight
to the (wrong) goal

= Worst-case: like a badly-
guided DFS

af

Greedy Search

\
* Expand the node that seems =2
closest... "

Arad

Sbiu
] E [

EED

253 0

= What can go wrong?

A* Search

3/29/17

Combining UCS and Greedy

= Uniform-cost orders by path cost, or backward cost g(n)
= Greedy orders by goal proximity, or forward cost h(n)

= A* Search orders by the sum: f(n) = g(n) + h(n) Example: Teg Grenager

When should A* terminate?

= Should we stop when we enqueue a goal?

/\
\/

= No: only stop when we dequeue a goal

Is A* Optimal?

R
@- 0
_5///)

= What went wrong?
= Actual bad goal cost < estimated good path cost

= We need estimates to be less than or equal to
actual costs!

Admissible Heuristics

= A heuristic 4 is admissible (optimistic) if:
0 < h(n) < h*(n)

where h*(n) is the true cost to a nearest goal

= Examples:
4 =

= Coming up with admissible heuristics is most of
what'’s involved in using A* in practice.

Optimality of A* Tree Search

Assume:

= Alis an optimal goal node

= Bisasuboptimal goal node
= his admissible

S

Claim: B

= A will exit the fringe before B

Optimality of A* Tree Search

Proof:
= Imagine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded 0
before B Q B

1. f(n)is less or equal to f(A)

f(n) = g(n) +h(n) Definition of f-cost
f(n) <g(4) Admissibility of h
g(4) = f(4)

h=0atagoal

3/29/17

Optimality of A* Tree Search

Proof:
= Imagine B is on the fringe

= Some ancestor n of Ais on the
fringe, too (maybe Al)

= Claim: n will be expanded
before B

1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)

Y

g9(4) < g(B)
f(4) < £(B)

B is suboptimal

h=0atagoal

Optimality of A* Tree Search
I

f(n)

Proof:
= |magine B is on the fringe

= Some ancestor n of A is on the
fringe, too (maybe Al)

= Claim: n will be expanded
before B

1. f(n)is less or equal to f(A)
2. f(A)is less than f(B)
3. nexpands before B

IN

= All ancestors of A expand 1(4) <1(B)
before B
= A expands before B

= A* search is optimal

UCS vs A* Contours

Goal

= Uniform-cost expanded
in all directions

= A* expands mainly
toward the goal, but
hedges its bets to
ensure optimality

@;oal

Which Algorithm?

= Uniform cost search (UCS):

Which Algorithm?

= A*, Manhattan Heuristic:

Which Algorithm?

3/29/17

= Best First / Greedy, Manhattan Heuristic:

Creating Admissible Heuristics

Most of the work in solving hard search problems
optimally is in coming up with admissible heuristics

Often, admissible heuristics are solutions to relaxed
problems, where new actions are available

Inadmissible heuristics are often useful too

Creating Heuristics

HA oA
s

Start State Goal State
= What are the states?

= How many states?

= What are the actions?

= What states can | reach from the start state?
= What should the costs be?

8-puzzle:

8 Puzzle |

= Heuristic: Number of

= h(start) = 8

tiles misplaced

..8 ..2 ..1

Start State Goal State

= |s it admissible? Average nodes expanded when

optimal path has length...

...4 steps | ...8 steps |...12 steps

UCs |112 6,300 |3.6x 106

TILES |13 39 227

8 Puzzle I

= What if we had an easier 8-
puzzle where any tile could
slide any direction at any
time, ignoring other tiles?

= Total Manhattan distance

- h(start) = 3+1+2+ ... Start State Goal State

8 Puzzle Il

=18 Average nodes expanded when
optimal path has length...

...4steps |...8 steps |...12 steps

.. TILES 18 39 227
= Admissible?

MANHATTAN | 12 25 73

= How about using the actual cost as a

heuristic?
= Would it be admissible?
= Would we save on nodes expanded?

= What's wrong with it?

= With A*: a trade-off between quality of

estimate and work per node!

Trivial Heuristics, Dominance

= Dominance: h, = h, if
exact

Vn @ ha(n) > he(n) I

maz (ha, hy)

= Heuristics form a semi-lattice: T~
= Max of admissible heuristics is admissible ha hb
h(n) = maz(hq(n), hy(n)) |
he
N

= Trivial heuristics

= Bottom of lattice is the zero heuristic (what
does this give us?)
= Top of lattice is the exact heuristic

A* Applications

= Pathing / routing problems

= Resource planning problems
= Robot motion planning

= Language analysis

= Machine translation

= Speech recognition

Tree Search: Extra Work!

= Failure to detect repeated states can cause
exponentially more work. Why?

A P Ae
1]

B e B® e
{ '

¢ @ cé co cé co
1]

D -@-

Graph Search

= In BFS, for example, we shouldn’t bother
expanding some nodes (which, and why?)

S

e P

< PN |
@ P a
| @ |
a h r f
N @ N
q f q l‘? G
/\G a

Q—T

[
|
a

Graph Search

= |dea: never expand a state twice

= How to implement:

Tree search + set of expanded states (“closed set”)

Expand the search tree node-by-node, but...

Before expanding a node, check to make sure its state has never
been expanded before

= If not new, skip it, if new add to closed set

= Hint: in python, store the closed set as a set, not a list
= Can graph search wreck completeness? Why/why not?

= How about optimality?

A* Graph Search Gone Wrong

State space graph Search tree
S (0+2)

A (1+4) B (1+1)

| |

C (2+1) C (3+1)

| |

G (5+0) G (6+0)

Consistency of Heuristics

= Main idea: estimated heuristic costs < actual
costs
= Admissibility: heuristic cost < actual cost to goal
h(A) < actual cost from A to G

= Consistency: heuristic “arc” cost < actual cost for

each arc
h(A) —h(C) < cost(A to C)
= Consequences of consistency:
= The f value along a path never decreases
h(A) < cost(A to C) + h(C)

f(A) = g(A) + h(A) < g(A) + cost(A to C) + h(C) = f(C)

3/29/17

Optimality of A* Graph Search

= Sketch: consider what A* does with a
consistent heuristic:

Nodes are popped with non-decreasing f-

scores: for all n, n” with n’ popped after n :

f(n’) 2 f(n)

= Proof by induction: (1) always pop the lowest f-

score from the fringe, (2) all new nodes have
larger (or equal) scores, (3) add them to the
fringe, (4) repeat!

For every state s, nodes that reach s

optimally are expanded before nodes that

reach s sub-optimally

Result: A* graph search is optimal

Optimality

Tree search:
= A* optimal if heuristic is admissible (and non-negative)
= UCS is a special case (h = 0)

Graph search:
= A* optimal if heuristic is consistent
= UCS optimal (h = 0 is consistent)

Consistency implies admissibility

In general, natural admissible heuristics tend to
be consistent, especially if from relaxed problems

Summary: A*

= A* uses both backward costs and
(estimates of) forward costs

= A* is optimal with admissible / consistent
heuristics

= Heuristic design is key: often use relaxed
problems

