
3/29/17

1

CSE 473: Artificial Intelligence
Spring 2017

Problem Spaces & Search

With slides from
Dan Weld, Pieter Abbeel, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Dieter Fox

Outline

§ Search Problems

§ Uninformed Search Methods
§ Depth-First Search
§ Breadth-First Search
§ Uniform-Cost Search

Agent vs. Environment

§ An agent is an entity that
perceives and acts.

§ A rational agent selects
actions that maximize its
utility function.

§ Characteristics of the
percepts, environment,
and action space dictate
techniques for selecting
rational actions.

Agent

Sensors

?

Actuators

Environm
ent

Percepts

Actions

Types of Agents

§ Reflex

§ Goal oriented

§ Utility-based

4

Goal Based Agents

§ Plan ahead
§ Ask “what if”

§ Decisions based on
(hypothesized)
consequences of actions

§ Must have a model of how
the world evolves in
response to actions

§ Act on how the world
WOULD BE

Search thru a

§ Set of states
§ Operators [and costs]
§ Start state
§ Goal state [test]

• Path: start a state satisfying goal test
[May require shortest path]
[Sometimes just need a state that passes test]

• Input:

• Output:

Problem Space (aka State Space)

3/29/17

2

Example: Traveling in Romania

§ State space:
§ Cities

§ Successor function:
§ Roads: Go to adjacent city

with cost = distance

§ Start state:
§ Arad

§ Goal test:
§ Is state == Bucharest?

§ Solution?

Example: Simplified Pac-Man
§ Input:

§ A state space

§ A successor function

§ A start state

§ A goal test

§ Output:

“N”, 1.0

“E”, 1.0

State Space Sizes?

§ Search Problem:
Eat all of the food

§ Pacman positions:
10 x 12 = 120

§ Pacman facing:
up, down, left, right

§ Food configurations: 230

§ Ghost1 positions: 12
§ Ghost 2 positions: 11

10 x 12 = 120

up, down, left, right
230

12
11

120 x 4 x 230 x 12 x 11 = 6.8 x 1013

State Space Graphs

§ State space graph:
§ Each node is a state
§ The successor function is

represented by arcs
§ Edges may be labeled with

costs
§ In a search graph, each state

occurs only once!

§ We can rarely build this graph
in memory (so we don’t)

S

G

d

b

p q

c

e

h

a

f

r

Ridiculously tiny search graph
for a tiny search problem

Search Trees

§ A search tree:
§ Start state at the root node
§ Children correspond to successors
§ Nodes contain states, correspond to PLANS to those states
§ Edges are labeled with actions and costs
§ For most problems, we can never actually build the whole tree

“E”, 1.0“N”, 1.0

This	is	now	/	start

Possible	futures

State	Space	Graphs	vs.	Search	Trees

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G
a

S

G

d

b

p q

c

e

h

a

f

r

We	construct	
both	on	

demand	– and	
we	construct	
as	little	as	
possible.

Each	NODE	in	
in	the	search	
tree	is	an	

entire	PATH	in	
the	state	

space	graph.

Search	TreeState	Space	
Graph

3/29/17

3

State	Space	Graphs	vs.	Search	Trees

S G

b

a

Consider	this	4-state	
graph:	

Important:	Lots	of	repeated	structure	in	the	search	tree!

How	big	is	its	search	tree	
(from	S)?

Tree	Search

Search	Example:	Romania Searching	with	a	Search	Tree

§ Search:
§ Expand	out	potential	plans	(tree	nodes)
§ Maintain	a	fringe	of	partial	plans	under	
consideration

§ Try	to	expand	as	few	tree	nodes	as	possible

General	Tree	Search

§ Important	ideas:
§ Fringe
§ Expansion
§ Exploration	strategy

§ Main	question:	which	fringe	nodes	to	explore?

Depth-First	Search

3/29/17

4

Depth-First	Search

Strategy:	expand	a	
deepest	node	first

Implementation:	Fringe	is	
a	LIFO	stack S

G

d

b

p q

c

e

h

a

f

r

Depth-First	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c

e

h

a

f

rqp
h

fd

b
a

c

e

r

Strategy:	expand	a	
deepest	node	first

Implementation:	Fringe	is	
a	LIFO	stack

Search	Algorithm	Properties Search	Algorithm	Properties

§ Complete:	Guaranteed	to	find	a	solution	if	one	exists?
§ Optimal:	Guaranteed	to	find	the	least	cost	path?
§ Time	complexity?
§ Space	complexity?

§ Cartoon	of	search	tree:
§ b	is	the	branching	factor
§ m	is	the	maximum	depth
§ solutions	at	various	depths

§ Number	of	nodes	in	entire	tree?
§ 1	+	b	+	b2 +	….	bm =	O(bm)

…
b 1 node

b nodes

b2 nodes

bm

nodes

m tiers

Depth-First	Search	(DFS)	Properties

…
b 1 node

b nodes

b2 nodes

bm nodes

m tiers

§ What	nodes	does	DFS	expand?
§ Some	left	prefix	of	the	tree.
§ Could	process	the	whole	tree!
§ If	m	is	finite,	takes	time	O(bm)

§ How	much	space	does	the	fringe	take?
§ Only	has	siblings	on	path	to	root,	so	O(bm)

§ Is	it	complete?
§ m	could	be	infinite,	so	only	if	we	prevent	cycles	

§ Is	it	optimal?
§ No,	it	finds	the	“leftmost”	solution,	regardless	of	

depth	or	cost

Breadth-First	Search

3/29/17

5

Breadth-First	Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

S

G

d

b

p q

c
e

h

a

f

r

Search

Tiers

Strategy:	expand	a	
shallowest	node	first

Implementation:	Fringe	
is	a	FIFO	queue

Breadth-First	Search	(BFS)	Properties
§ What	nodes	does	BFS	expand?

§ Processes	all	nodes	above	shallowest	solution
§ Let	depth	of	shallowest	solution	be	d	
§ Search	takes	time	O(bd)

§ How	much	space	does	the	fringe	take?
§ Has	roughly	the	last	tier,	so	O(bd)

§ Is	it	complete?
§ d must	be	finite	if	a	solution	exists,	so	yes!

§ Is	it	optimal?
§ Only	if	costs	are	all	1	(more	on	costs	later)

…
b 1 node

b nodes

b2 nodes

bm nodes

d tiers

bd nodes

DFS	vs BFS

Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

N unless
finite

N O(bm) O(bm)

Y Y O(bd) O(bd)

Memory a Limitation?
§ Suppose:

• 4 GHz CPU
• 32 GB main memory
• 100 instructions / expansion
• 5 bytes / node

• 40 M expansions / sec
• Memory filled in 160 sec … 3 min

Iterative Deepening
Iterative deepening uses DFS as a subroutine:

1. Do a DFS which only searches for paths of
length 1 or less.

2. If “1” failed, do a DFS which only searches paths
of length 2 or less.

3. If “2” failed, do a DFS which only searches paths
of length 3 or less.

….and so on.

Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

ID

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y Y O(bd) O(bd)

…
b

BFS vs. Iterative Deepening

§ For b = 10, d = 5:

§ BFS = 1 + 10 + 100 + 1,000 + 10,000 + 100,000 =
111,111

§ IDS = 6 + 50 + 400 + 3,000 + 20,000 + 100,000 =
123,456

§ Overhead = (123,456 - 111,111) / 111,111 = 11%

§ Memory BFS: 100,000; IDS: 50 30

3/29/17

6

Costs on Actions

Notice that BFS finds the shortest path in terms of number of
transitions. It does not find the least-cost path.

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Uniform Cost Search

START

GOAL

d

b

p
q

c

e

h

a

f

r

2

9 2

81

8

2

3

1

4

4

15

1

3
2

2

Expand
cheapest
node first:
Fringe is a
priority
queue

Uniform Cost Search

S

a

b

d p

a

c

e

p

h

f

r

q

q c G

a

qe

p

h

f

r

q

q c G

a

Strategy: expand a
cheapest node first:

Fringe is a priority
queue (priority:
cumulative cost)

S

G

d

b

p q

c

e

h

a

f

r

3 9 1

164 11
5

713

8

1011

17 11

0

6

3 9

1

1

2

8

8 2

15

1

2

Cost
contours

2
…

Uniform Cost Search (UCS)
Properties

§ What nodes does UCS expand?
§ Processes all nodes with cost less than cheapest solution!
§ If that solution costs C* and arcs cost at least ε , then the “effective

depth” is roughly C*/ε
§ Takes time O(bC*/ε) (exponential in effective depth)

§ How much space does the fringe take?
§ Has roughly the last tier, so O(bC*/ε)

§ Is it complete?
§ Assuming best solution has a finite cost and minimum arc cost is

positive, yes!

§ Is it optimal?
§ Yes!

b

C*/ε
“tiers” C ≤ 3

C ≤ 2
C ≤ 1

Uniform Cost Search
§ Strategy: expand lowest

path cost

§ The good: UCS is
complete and optimal!

§ The bad:
§ Explores options in every

“direction”
§ No information about goal

location Start Goal

…

c ≤ 3

c ≤ 2
c ≤ 1

Uniform Cost Search
Algorithm Complete Optimal Time Space
DFS w/ Path

Checking

BFS

UCS

Y N O(bm) O(bm)

Y Y O(bd) O(bd)

Y* Y O(bC*/ε) O(bC*/ε)

…
b

C*/ε tiers

3/29/17

7

Uniform Cost: Pac-Man
§ Cost of 1 for each action
§ Explores all of the states, but one

The One Queue
§ All these search algorithms

are the same except for
fringe strategies
§ Conceptually, all fringes are

priority queues (i.e. collections
of nodes with attached
priorities)

§ Practically, for DFS and BFS,
you can avoid the log(n)
overhead from an actual
priority queue, by using stacks
and queues

§ Can even code one
implementation that takes a
variable queuing object

To Do:

§ Look at the course website:
§ http://www.cs.washington.edu/cse473/17sp

§ Do the readings (Ch 3)
§ Do PS0 if new to Python
§ Start PS1, when it is posted

