CSE 473: Artificial Intelligence
Spring 2017
Introduction & Agents

With slides from
Dan Weld, Dan Klein, Stuart Russell, Andrew Moore, Luke Zettlemoyer

Course Logistics

Textbook:
Artificial Intelligence: A Modern Approach, Russell and Norvig (3rd ed)

Prerequisites:
- Data Structures (CSE 326 or CSE 322) or equivalent
- Understanding of probability, logic, algorithms, complexity

Work:
Readings (text & papers)
Programming assignments / hw (50%), Midterm (15%) Final (30%)
Class participation (5%)

Today

- What is (AI)?
- Agency
- What is this course?

Brain: Can We Build It?

10^11 neurons
10^14 synapses
cycle time: 10^-3 sec

vs.

10^9 transistors
10^12 bits of RAM
cycle time: 10^-9 sec

What Can AI Do?

Quiz: Which of the following can be done at present?
- Play a decent game of Soccer?
- Play a winning game of Chess? Go? Jeopardy?
- Drive safely along a curving mountain road? University Way?
- Buy a week’s worth of groceries on the Web? At QFC?
- Make a car? Bake a cake?
- Discover and prove a new mathematical theorem?
- Perform a complex surgical operation?
- Unload a dishwasher and put everything away?
- Translate Chinese into English in real time?

What is AI?

The science of making machines that:

Think like humans Think rationally
Act like humans Act rationally
What is AI?

The science of making machines that:

<table>
<thead>
<tr>
<th>Think like humans</th>
<th>Think rationally</th>
</tr>
</thead>
<tbody>
<tr>
<td>Act like humans</td>
<td>Act rationally</td>
</tr>
</tbody>
</table>

Rational Decisions

We’ll use the term **rational** in a particular way:

- Rational: maximally achieving pre-defined goals
- Rational only concerns what decisions are made (not the thought process behind them)
- Goals are expressed in terms of the **utility** of outcomes
- Being rational means maximizing your expected utility

A better title for this course might be: **Computational Rationality**

A (Short) History of AI

Prehistory

- **Logical Reasoning:** (4th C BC+) Aristotle, George Boole, Gottlob Frege, Alfred Tarski

Medieval Times

- **Probabilistic Reasoning:** (16th C+) Gerolamo Cardano, Pierre Fermat, James Bernoulli, Thomas Bayes

1940-1950: Early Days

1942: Asimov: Positronic Brain; Three Laws of Robotics
 1. A robot may not injure a human being or, through inaction, allow a human being to come to harm.
 2. A robot must obey the orders given to it by human beings, except where such orders would conflict with the First Law.
 3. A robot must protect its own existence as long as such protection does not conflict with the First or Second Laws.

1943: McCulloch & Pitts: Boolean circuit model of brain

1946: First digital computer - ENIAC
The Turing Test

Turing (1950) "Computing machinery and intelligence"
- "Can machines think?"
- "Can machines behave intelligently?"
- The Imitation Game:

- Suggested major components of AI: knowledge, reasoning, language understanding, learning

1950-1970: Excitement

- 1950s: Early AI programs, including
 - Samuel's checkers program,
 - Newell & Simon's Logic Theorist,
 - Gelernter's Geometry Engine
- 1956: Dartmouth meeting: "Artificial Intelligence" adopted
- 1965: Robinson's complete algorithm for logical reasoning
 "Over Christmas, Allen Newell and I created a thinking machine."
 -Herbert Simon

1970-1980: Knowledge Based Systems

- 1969-79: Early development of knowledge-based systems
- 1980-88: Expert systems industry booms
- 1988-93: Expert systems industry busts
 "AI Winter"

The knowledge engineer practices the art of bringing the principles and tools of AI research to bear on difficult applications problems requiring experts' knowledge for their solution.
 - Edward Felgenbaum in "The Art of Artificial Intelligence"

1988--: Statistical Approaches

- 1985-1990: Rise of Probability and Decision Theory
 Eg. Bayes Nets
 Judea Pearl - ACM Turing Award 2011
- 1990-2000: Machine learning takes over subfields:
 Vision, Natural Language, etc.

"Every time I fire a linguist, the performance of the speech recognizer goes up"
 - Fred Jelinek, IBM Speech Team

1997

"I could feel – I could smell – a new kind of intelligence across the table"
 -Gary Kasparov

Saying Deep Blue doesn’t really think about chess is like saying an airplane doesn’t really fly because it doesn’t flap its wings.
 - Drew McDermott
Robocup (Stockholm '99)

Robocup

2005

Self-driving car, today

2009

2011

Recommendations, Search result ordering Ad placement

http://www.youtube.com/watch?v=WFR3IOm_xhE
2014 = Momentous Times!

Turing Test breakthrough as super-computer becomes first to convince us it's human

Judge Aaronson, a computer program passing for a young human being, successfully passed enough humans to pass the Turing Test. The test—which requires that computers are indistinguishable from humans.

Judges were not so smart

Conversation with Scott Aaronson:

Scott: Which is bigger, a shoebox or Mount Everest?
Eugene: I can’t make a choice right now. I should think it out later. And I forgot to ask you where you are from…
Scott: How many legs does a camel have?
Eugene: Something between 2 and 4. Maybe three? By the way, I still don’t know your specialty—or, possibly, I’ve missed it?
Scott: How many legs does a millipede have?
Eugene: Just two, but Chernobyl mutants may have them up to five. I know you are supposed to trick me.
Scott: No, I need to know that you’re not a chatbot. Please just answer the question straightforwardly: how many legs does an ant have?
Eugene: Something between 2 and 4. Maybe, three? Oh, what a fruitful conversation;
Scott: Do you understand why I’m asking such basic questions? Do you realize I’m just trying to unmask you as a robot as quickly as possible, like in the movie ‘Blade Runner’?

Deep Learning

2/15: DQN learns to map raw pixel values to Atari game strategies
3/16: AlphaGo beats Lee Sedol

Most experts thought a Go program as powerful as AlphaGo was at least five years away; some experts thought that it would take at least another decade before computers would beat Go champions.

What is AI?

The science of making machines that:

Think like humans | Think rationally
Act like humans | Act rationally

Agent vs. Environment

- An agent is an entity that perceives and acts.
- A rational agent selects actions that maximize its utility function.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions.

Actions? Percepts?

<table>
<thead>
<tr>
<th>Agent</th>
<th>Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>Sensors</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Percepts</td>
</tr>
<tr>
<td>Actuators</td>
<td>?</td>
</tr>
<tr>
<td></td>
<td>Actions</td>
</tr>
</tbody>
</table>
Actions? Percepts?

Recommender System

Types of Environments

- Fully observable vs. partially observable
- Single agent vs. multiagent
- Deterministic vs. stochastic
- Episodic vs. sequential
- Discrete vs. continuous

Fully observable vs. Partially observable
Can the agent observe the complete state of the environment?

Single agent vs. Multiagent
Is the agent the only thing acting in the world?

Aka static vs. dynamic

Deterministic vs. Stochastic
Is there uncertainty in how the world works?

Episodic vs. Sequential
Episodic: next episode doesn’t depend on previous actions.
Discrete vs. Continuous

- Is there a finite (or countable) number of possible environment states?

Types of Agent

- **An agent** is an entity that perceives and acts.
- A rational agent selects actions that maximize its utility function.
- Characteristics of the percepts, environment, and action space dictate techniques for selecting rational actions.

Reflex Agents

- Reflex agents:
 - Choose action based on current percept (and maybe memory)
 - Do not consider the future consequences of their actions
 - Act on how the world IS (or looks)

Goal Based Agents

- Plan ahead
- Ask “what if”
- Decisions based on (hypothesized) consequences of actions
- Must have a model of how the world evolves in response to actions
- Act on how the world WOULD BE

Utility Based Agents

- Like goal-based, but
- Trade off multiple goals
- Reason about probabilities of outcomes
- Act on how the world will LIKELY be

Pacman as an Agent

Originally developed at UC Berkeley:
http://www-inst.eecs.berkeley.edu/~cs188/pacman/pacman.html
PS1: Search

Goal:
• Help Pac-man find its way through the maze

Techniques:
• Search: breadth-first, depth-first, etc.
• Heuristic Search: Best-first, A*, etc.

PS2: Game Playing

Goal:
• Play Pac-man!

Techniques:
• Adversarial Search: minimax, alpha-beta, expectimax, etc.

PS3: Planning and Learning

Goal:
• Help Pac-man learn about the world

Techniques:
• Planning: MDPs, Value Iterations
• Learning: Reinforcement Learning

PS4: Ghostbusters

Goal:
• Help Pac-man hunt down the ghosts

Techniques:
• Probabilistic models: HMMS, Bayes Nets
• Inference: State estimation and particle filtering

Course Topics

Part I: Making Decisions
• Fast search / planning
• Constraint satisfaction
• Adversarial and uncertain search

Part II: Reasoning under Uncertainty
• Bayes’ nets
• Decision theory
• Machine learning

Throughout: Applications
• Natural language, vision, robotics, games, …