

Bayes' Nets
Representation
Conditional Independences
- Probabilistic Inference
- Enumeration (exact, exponential complexity)
- Variable elimination (exact, worst-case
exponential complexity, often better)
- Probabilistic inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

Inference	
- Inference: calculating some useful quantity from a joint probability distribution	- Examples: - Posterior probability $P\left(Q \mid E_{1}=e_{1}, \ldots E_{k}=e_{k}\right)$ - Most likely explanation: $\operatorname{argmax}_{q} P\left(Q=q \mid E_{1}=e_{1} \ldots\right)$

Example: Traffic Domain	
- Random Variables - R: Raining - T: Traffic - L: Late for class! $\begin{aligned} P(L) & =? \\ & =\sum_{r, t} P(r, t, L) \\ & =\sum_{r, t} P(r) P(t \mid r) P(L \mid t) \end{aligned}$	

Another Variable Elimination Example	
Query: $P\left(X_{3} \mid Y_{1}=y_{1}, Y_{2}=y_{2}, Y_{3}=y_{3}\right)$ Start by inserting evidence, which gives the following initial factors: $p(Z) p\left(X_{1} \mid Z\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{1} \mid X_{1}\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)$ Eliminate X_{1}, this introduces the factor $f_{1}\left(Z, y_{1}\right)=\sum_{x_{1}} p\left(x_{1} \mid Z\right) p\left(y_{1} \mid x_{1}\right)$, and we are left with: $p(Z) f_{1}\left(Z, y_{1}\right) p\left(X_{2} \mid Z\right) p\left(X_{3} \mid Z\right) p\left(y_{2} \mid X_{2}\right) p\left(y_{3} \mid X_{3}\right)$ Eliminate X_{2}, this introduces the factor $f_{2}\left(Z, y_{2}\right)=\sum_{x_{2}} p\left(x_{2} \mid Z\right) p\left(y_{2} \mid x_{2}\right)$, and we are left with: $p(Z) f_{1}\left(Z, y_{1}\right) f_{2}\left(Z, y_{2}\right) p\left(X_{3} \mid Z\right) p\left(y_{3} \mid X_{3}\right)$ Eliminate Z, this introduces the factor $f_{3}\left(y_{1}, y_{2}, X_{3}\right)=\sum_{z} p(z) f_{1}\left(z, y_{1}\right) f_{2}\left(z, y_{2}\right) p\left(X_{3} \mid z\right)$, and we are left: $p\left(y_{3} \mid X_{3}\right), f_{3}\left(y_{1}, y_{2}, X_{3}\right)$ No hidden variables left. Join the remaining factors to get: $f_{4}\left(y_{1}, y_{2}, y_{3}, X_{3}\right)=P\left(y_{3} \mid X_{3}\right) f_{3}\left(y_{1}, y_{2}, X_{3}\right)$ Normalizing over X_{3} gives $P\left(X_{3} \mid y_{1}, y_{2}, y_{3}\right)$.	Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, z, and X_{3} respectively).

Variable Elimination Ordering
- For the query $\mathrm{P}\left(\mathrm{X}_{\mathrm{n}} \mid \mathrm{y}_{1}, \ldots, \mathrm{y}_{\mathrm{n}}\right)$ work through the following two different orderings as done in previous slide: $\mathrm{Z}, \mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}$ and $\mathrm{X}_{1}, \ldots, \mathrm{X}_{\mathrm{n}-1}, \mathrm{Z}$. What is the size of the maximum factor generated for each of the orderings? - Answer: 2^{n} versus 2^{1} (assuming binary) - In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity
- The computational and space complexity of variable elimination is
determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
- E.g., previous slide's example 2^{n} vs. 2
- Does there always exist an ordering that only results in small factors?
- No!

Worst Case Complexity?	
- CSP: $\left(x_{1} \vee x_{2} \vee \neg x_{3}\right) \wedge\left(-x_{1} \vee x_{3} \vee \neg x_{4}\right) \wedge\left(x_{2} \vee \neg x_{2} \vee x_{4}\right) \wedge\left(-x_{3} \vee \neg x_{4} \vee \neg x_{5}\right) \wedge\left(x_{2} \vee x_{5} \vee x_{7}\right) \wedge\left(x_{4} \vee x_{5} \vee x_{6}\right) \wedge\left(-x_{5} \vee x_{6} \vee \neg x_{7}\right) \wedge\left(-x_{5} \vee x_{5}\right.$ $P\left(X_{i}=0\right)=P\left(X_{i}=1\right)=0.5$ $Y_{1}=X_{1} \vee X_{2} \vee \neg X_{3}$ $Y_{8}=\neg X_{5} \vee X_{6} \vee X_{7}$ $Y_{1,2}=Y_{1} \wedge Y_{2}$ $Y_{7,8}=Y_{7} \wedge Y_{8}$ $Y_{1,2,3,4}=Y_{1,2} \wedge Y_{3,4}$ $Y_{5,6,7,8}=Y_{5,6} \wedge Y_{7,8}$ $Z=Y_{1,2,3,4} \wedge Y_{5,6,7,8}$ - If we can answer $\mathrm{P}(\mathrm{z})$ equal to zero or not, we answered whether the 3-SAT problem has a solution. - Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.	

Polytrees
- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
- Try it!!
- Cut-set conditioning for Bayes' net inference
- Choose det of variables such that if removed only a polytree remains
- Exercise: Think about how the specifics would work out!

Bayes' Nets
Representation
Conditional Independences
" Probabilistic Inference
Enumeration (exact, exponential
complexity)
Variable elimination (exact, worst-case
exponential complexity, often better)
- Inference is NP-complete
- Sampling (approximate)
- Learning Bayes' Nets from Data

