

Bayes' Net Semantics
- A set of nodes, one per variable X $P\left(A_{l}\right) \quad \ldots \quad P\left(A_{n}\right)$ - A directed, acyclic graph - A conditional distribution for each node - A collection of distributions over X, one for each combination of parents' values $P\left(X \mid a_{1} \ldots a_{n}\right)$ - CPT: conditional probability table $P\left(X \mid A_{1} \ldots A_{n}\right)$ - Description of a noisy "causal" process A Bayes net $=$ Topology (graph) + Local Conditional Probabilities

Probabilities in BNS
- Bayes' nets implicitly encode joint distributions
- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the
relevant conditionals together:
$P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Example:

Probabilities in BNs ETP
- Why are we guaranteed that setting $P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \text { parents }\left(X_{i}\right)\right)$ results in a proper joint distribution? - Chain rule (valid for all distributions): $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$ - Assume conditional independences: $\quad P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$ \rightarrow Consequence: $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$ - Not every BN can represent every joint distribution - The topology enforces certain conditional independencies

