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Particle Filtering
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 Filtering: approximate solution

 Sometimes |X| is too big to use exact inference
 |X| may be too big to even store B(X)
 E.g. X is continuous
 |X|2 may be too big to do updates

 Solution: approximate inference
 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number of samples
 But: number needed may be large
 In memory: list of particles, not states

 This is how robot localization works in practice



Representation: Particles

 Our representation of P(X) is now a list of N particles (samples)
 Generally, N << |X|
 Storing map from X to counts would defeat the point

 P(x) approximated by number of particles with value x
 So, many x may have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)



Particle Filtering: Elapse Time

 Each particle is moved by sampling its next 
position from the transition model

 This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

 Here, most samples move clockwise, but some move in 
another direction or stay in place

 This captures the passage of time
 If enough samples, close to exact values before and 

after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



 Slightly trickier:
 Don’t sample observation, fix it

 Similar to likelihood weighting, downweight 
samples based on the evidence

 As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



Particle Filtering: Resample

 Rather than tracking weighted samples, we 
resample

 N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

 This is equivalent to renormalizing the 
distribution

 Now the update is complete for this time step, 
continue with the next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Recap: Particle Filtering
 Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

     Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Particle Filters in Robotics



Particle Filters



Sensor Information: Importance Sampling
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 Robot Motion
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Sensor Information: Importance Sampling
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Robot Motion
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draw xi
t1 from Bel(xt1)

draw xi
t from p(xt | xi

t1,ut1)

Importance factor for xi
t:

Particle Filter Algorithm
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Sampled Motion Model
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Particle Filter Localization (Sonar)

[Video: global-floor.gif]



Aibo Sensor Model



Distributions
for P(z|x)



Localization for AIBO robots



WiFi-Based People Tracking



WiFi Sensor Model

Mean

Variance



Tracking Example



Adaptive Sampling



KLD-Sampling Sonar

Adapt number of particles on the fly based 
on statistical approximation measure



KLD-Sampling Laser



Robot Mapping
 SLAM: Simultaneous Localization And Mapping

 We do not know the map or our location
 State consists of position AND map!
 Main techniques: Kalman filtering (Gaussian HMMs) 

and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]



Mapping with a Laser Scanner

MIT Robotics 2015 Dieter Fox: RGB-D Perception 
in Robotics



Rao-Blackwellized Mapping with Scan-Matching
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Loop Closure Example

map of particle 1 map of particle 3

map of particle 2

3 particles



Rao-Blackwellized Mapping with Scan-
Matching
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Rao-Blackwellized Mapping with Scan-
Matching
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Example (Intel Lab)
 15 particles

 four times faster 
than real-time
P4, 2.8GHz

 5cm resolution 
during scan 
matching

 1cm resolution in 
final map

Work by Grisetti et al.



Outdoor Campus Map
 30 particles

 250x250m2

 1.75 km 
(odometry)

 20cm resolution 
during scan 
matching

 30cm resolution 
in final map

Work by Grisetti et al.

 30 particles

 250x250m2

 1.088 miles 
(odometry)

 20cm resolution 
during scan 
matching

 30cm resolution 
in final map
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