CSE 473: Artificial Intelligence Particle Filters

Dieter Fox --- University of Washington

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Particle Filtering

- Filtering: approximate solution
- Sometimes |X| is too big to use exact inference
 - |X| may be too big to even store B(X)
 - E.g. X is continuous
 - X|² may be too big to do updates
- Solution: approximate inference
 - Track samples of X, not all values
 - Samples are called particles
 - Time per step is linear in the number of samples
 - But: number needed may be large
 - In memory: list of particles, not states
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of P(X) is now a list of N particles (samples)
 - Generally, N << |X|</p>
 - Storing map from X to counts would defeat the point
- P(x) approximated by number of particles with value x
 - So, many x may have P(x) = 0!
 - More particles, more accuracy
- For now, all particles have a weight of 1

Particle Filtering: Elapse Time

Each particle is moved by sampling its next position from the transition model

 $x' = \operatorname{sample}(P(X'|x))$

- This is like prior sampling samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
 - If enough samples, close to exact values before and after (consistent)

(3,3)

(2,3)(3,3)(3,2)

(3,3)(3,2)(1,2)(3,3)

(3,3)(2,3)

(3,2)(2,3)(3,2)

(3,1)

(3,3)(3,2)

(1,3)

(2,3)

(3,2)(2,2)

Particle Filtering: Observe

Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

w(x) = P(e|x) $B(X) \propto P(e|X)B'(X)$

 As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of P(e))

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

Particles	s:
(3,2)	w=.9
(2,3)	w=.2
(3,2)	w=.9
(3,1)	w=.4
(3,3)	w=.4
(3,2)	w=.9
(1,3)	w=.1
(2,3)	w=.2
(3,2)	w=.9
(2,2)	w=.4
(New) P	articles:
(3,2)	
(2,2)	
(3,2)	
(2,3)	
(3,3)	
(3,2)	
(1,3)	

(2,3) (3,2) (3,2)

Recap: Particle Filtering

Particles: track samples of states rather than an explicit distribution

		Elapse		Weight		Resample		
	•						•	
Partic (3,3 (2,3 (3,3 (3,2	les: 3) 3) 3) 2)		Particles: (3,2) (2,3) (3,2) (3,1) (2,2)		Particles: (3,2) w=.9 (2,3) w=.2 (3,2) w=.9 (3,1) w=.4		(New) Partic (3,2) (2,2) (3,2) (2,3) (2,3)	cles:
(3,3 (3,2 (1,2 (3,3 (3,3 (2,3	5) 2) 3) 3)		(3,3) (3,2) (1,3) (2,3) (3,2) (2,2)		(3,3) W=.4 $(3,2) W=.9$ $(1,3) W=.1$ $(2,3) W=.2$ $(3,2) W=.9$ $(2,2) W=.4$		(3,3) (3,2) (1,3) (2,3) (3,2) (3,2)	

[Demos: ghostbusters particle filtering (L15D3,4,5)]

Particle Filters in Robotics

Particle Filters

Sensor Information: Importance Sampling

Robot Motion

$Bel^{(x)} \leftarrow \int p(x | u, x') Bel(x') dx'$

Sensor Information: Importance Sampling

Robot Motion

Particle Filter Algorithm

Sampled Motion Model

Particle Filter Localization (Sonar)

Aibo Sensor Model

Distributions

for P(z|x)

Localization for AIBO robots

WiFi-Based People Tracking

WiFi Sensor Model

Variance

Tracking Example

Adaptive Sampling

KLD-Sampling Sonar

Adapt number of particles on the fly based on statistical approximation measure

KLD-Sampling Laser

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
 - We do not know the map or our location
 - State consists of position AND map!
 - Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

[Demo: PARTICLES-SLAM-mapping1-new.avi]

Mapping with a Laser Scanner

MIT Robotics 2015

Dieter Fox: RGB-D Perception in Robotics

Rao-Blackwellized Mapping with Scan-Matching

Map: Intel Research Lab Seattle

Loop Closure Example

Rao-Blackwellized Mapping with Scan-Matching

Map: Intel Research Lab Seattle

Rao-Blackwellized Mapping with Scan-Matching

Map: Intel Research Lab Seattle

Example (Intel Lab)

• 15 particles

- four times faster than real-time P4, 2.8GHz
- 5cm resolution during scan matching
- 1cm resolution in final map

Work by Grisetti et al.

Outdoor Campus Map

• 30 particles

- 250x250m²
- 1.088 miles (odometry)
- 20cm resolution during scan matching
- 30cm resolution in final map

Work by Grisetti et al.