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Particle Filtering
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 Filtering: approximate solution

 Sometimes |X| is too big to use exact inference
 |X| may be too big to even store B(X)
 E.g. X is continuous
 |X|2 may be too big to do updates

 Solution: approximate inference
 Track samples of X, not all values
 Samples are called particles
 Time per step is linear in the number of samples
 But: number needed may be large
 In memory: list of particles, not states

 This is how robot localization works in practice



Representation: Particles

 Our representation of P(X) is now a list of N particles (samples)
 Generally, N << |X|
 Storing map from X to counts would defeat the point

 P(x) approximated by number of particles with value x
 So, many x may have P(x) = 0! 
 More particles, more accuracy

 For now, all particles have a weight of 1

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)



Particle Filtering: Elapse Time

 Each particle is moved by sampling its next 
position from the transition model

 This is like prior sampling – samples’ frequencies 
reflect the transition probabilities

 Here, most samples move clockwise, but some move in 
another direction or stay in place

 This captures the passage of time
 If enough samples, close to exact values before and 

after (consistent)

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



 Slightly trickier:
 Don’t sample observation, fix it

 Similar to likelihood weighting, downweight 
samples based on the evidence

 As before, the probabilities don’t sum to one, 
since all have been downweighted (in fact they 
now sum to (N times) an approximation of P(e))

Particle Filtering: Observe

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)



Particle Filtering: Resample

 Rather than tracking weighted samples, we 
resample

 N times, we choose from our weighted sample 
distribution (i.e. draw with replacement)

 This is equivalent to renormalizing the 
distribution

 Now the update is complete for this time step, 
continue with the next one

Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)



Recap: Particle Filtering
 Particles: track samples of states rather than an explicit distribution

Particles:
    (3,3)
    (2,3)
    (3,3)   
    (3,2)
    (3,3)
    (3,2)
    (1,2)
    (3,3)
    (3,3)
    (2,3)

Elapse Weight Resample

Particles:
    (3,2)
    (2,3)
    (3,2)   
    (3,1)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (2,2)

     Particles:
    (3,2)  w=.9
    (2,3)  w=.2
    (3,2)  w=.9
    (3,1)  w=.4
    (3,3)  w=.4
    (3,2)  w=.9
    (1,3)  w=.1
    (2,3)  w=.2
    (3,2)  w=.9
    (2,2)  w=.4

(New) Particles:
    (3,2)
    (2,2)
    (3,2)   
    (2,3)
    (3,3)
    (3,2)
    (1,3)
    (2,3)
    (3,2)
    (3,2)

[Demos: ghostbusters particle filtering (L15D3,4,5)]



Particle Filters in Robotics



Particle Filters



Sensor Information: Importance Sampling
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 Robot Motion
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Sensor Information: Importance Sampling
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Robot Motion
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t:

Particle Filter Algorithm
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Particle Filter Localization (Sonar)

[Video: global-floor.gif]



Aibo Sensor Model



Distributions
for P(z|x)



Localization for AIBO robots



WiFi-Based People Tracking



WiFi Sensor Model

Mean

Variance



Tracking Example



Adaptive Sampling



KLD-Sampling Sonar

Adapt number of particles on the fly based 
on statistical approximation measure



KLD-Sampling Laser



Robot Mapping
 SLAM: Simultaneous Localization And Mapping

 We do not know the map or our location
 State consists of position AND map!
 Main techniques: Kalman filtering (Gaussian HMMs) 

and particle methods

DP-SLAM, Ron Parr
[Demo: PARTICLES-SLAM-mapping1-new.avi]



Mapping with a Laser Scanner

MIT Robotics 2015 Dieter Fox: RGB-D Perception 
in Robotics



Rao-Blackwellized Mapping with Scan-Matching
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Loop Closure Example

map of particle 1 map of particle 3

map of particle 2

3 particles



Rao-Blackwellized Mapping with Scan-
Matching
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Rao-Blackwellized Mapping with Scan-
Matching
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Example (Intel Lab)
 15 particles

 four times faster 
than real-time
P4, 2.8GHz

 5cm resolution 
during scan 
matching

 1cm resolution in 
final map

Work by Grisetti et al.



Outdoor Campus Map
 30 particles

 250x250m2

 1.75 km 
(odometry)

 20cm resolution 
during scan 
matching

 30cm resolution 
in final map

Work by Grisetti et al.

 30 particles

 250x250m2

 1.088 miles 
(odometry)

 20cm resolution 
during scan 
matching

 30cm resolution 
in final map
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