CSE 473: Artificial Intelligence Particle Filters

Dieter Fox --- University of Washington
[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Particle Filtering

- Filtering: approximate solution
- Sometimes $|X|$ is too big to use exact inference
- $|X|$ may be too big to even store $B(X)$
- E.g. X is continuous
- $|X|^{2}$ may be too big to do updates
- Solution: approximate inference
- Track samples of X, not all values
- Samples are called particles
- Time per step is linear in the number of samples
- But: number needed may be large
- In memory: list of particles, not states
- This is how robot localization works in practice

0.0	0.1	0.0
0.0	0.0	0.2
0.0	0.2	0.5

Representation: Particles

- Our representation of $P(X)$ is now a list of N particles (samples)
- Generally, N << |X|
- Storing map from X to counts would defeat the point
- $P(x)$ approximated by number of particles with value x

- So, many x may have $P(x)=0$!
- More particles, more accuracy

Particles:

- For now, all particles have a weight of 1

Particle Filtering: Elapse Time

- Each particle is moved by sampling its next position from the transition model

$$
x^{\prime}=\operatorname{sample}\left(P\left(X^{\prime} \mid x\right)\right)
$$

- This is like prior sampling - samples' frequencies reflect the transition probabilities
- Here, most samples move clockwise, but some move in another direction or stay in place
- This captures the passage of time
- If enough samples, close to exact values before and after (consistent)

Particle Filtering: Observe

- Slightly trickier:

- Don't sample observation, fix it
- Similar to likelihood weighting, downweight samples based on the evidence

$$
\begin{aligned}
w(x) & =P(e \mid x) \\
B(X) & \propto P(e \mid X) B^{\prime}(X)
\end{aligned}
$$

- As before, the probabilities don't sum to one, since all have been downweighted (in fact they now sum to (N times) an approximation of $\mathrm{P}(\mathrm{e})$)

Particle Filtering: Resample

- Rather than tracking weighted samples, we resample
- N times, we choose from our weighted sample distribution (i.e. draw with replacement)
- This is equivalent to renormalizing the distribution
- Now the update is complete for this time step, continue with the next one

(New) Particles:

Recap: Particle Filtering

- Particles: track samples of states rather than an explicit distribution

Elapse

Particles:
$(3,3)$
$(2,3)$
$(3,3)$
$(3,2)$
$(3,3)$
$(3,2)$
$(1,2)$
$(3,3)$
$(3,3)$
$(2,3)$

Weight

Particles:

$(3,2)$ $(2,3)$ $(3,2)$ $(3,1)$ $(3,3)$ $(3,2)$ $(1,3)$ $(2,3)$
$(3,2)$
$(2,2)$

Particles:
$(3,2) \mathrm{w}=.9$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(3,1) \mathrm{w}=.4$
$(3,3) \mathrm{w}=.4$
$(3,2) \mathrm{w}=.9$
$(1,3) \mathrm{w}=.1$
$(2,3) \mathrm{w}=.2$
$(3,2) \mathrm{w}=.9$
$(2,2) \mathrm{w}=.4$

Resample

(New) Particles: $(3,2)$
$(2,2)$
$(3,2)$
$(2,3)$
$(3,3)$
$(3,2)$
$(1,3)$
$(2,3)$
$(3,2)$
$(3,2)$

Particle Filters in Robotics

Particle Filters

Sensor Information: Importance Sampling

$\operatorname{Bel}(x)$	$\leftarrow \alpha p(z \mid x) \mathrm{Bel}^{-}(x)$
w	$\leftarrow \frac{\alpha p(z \mid x) \mathrm{Bel}^{-}(x)}{\operatorname{Bel}^{-}(x)}=\alpha p(z \mid x)$

品
$\dagger p(s)$

+ $P(a \mid s)$

Robot Motion

$\operatorname{Bel}(x) \leftarrow \int p(x \mid u, x) \operatorname{Bel}(x)$ व x

$p(s)$

| 11111

Sensor Information: Importance Sampling

$$
\begin{aligned}
& \operatorname{Bel}(x) \leftarrow \alpha p(z \mid x) \operatorname{Bel}^{-}(x) \\
& w \\
& \leftarrow \frac{\alpha p(z \mid x) \operatorname{Bel}^{-}(x)}{\operatorname{Bel}^{-}(x)}=\alpha p(z \mid x)
\end{aligned}
$$

$\boldsymbol{p}(\mathbf{s})$

T
率 \mathbf{P} (g|s)

+ P(S)

Robot Motion

$\operatorname{Bet}(x) \leftarrow \int p(x \mid u, x) \operatorname{Bet}(x)$ ax

$\dagger p(s)$

$p(s)$

Particle Filter Algorithm

$$
\begin{aligned}
\operatorname{Bel}\left(x_{t}\right)=\eta p\left(z_{t} \mid x_{t}\right) \int p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right) d x_{t-1} \\
\longrightarrow \quad \text { draw } x_{t-1}^{i} \text { from } \operatorname{Bel}\left(x_{t-1}\right)
\end{aligned} \quad \begin{aligned}
& \\
& w_{t}^{i}=\frac{\text { target distribution }}{\text { proposal distribution }} \\
&=\frac{\eta p\left(z_{t} \mid x_{t}\right) p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right)}{p\left(x_{t} \mid x_{t-1}, u_{t-1}\right) \operatorname{Bel}\left(x_{t-1}\right)} \\
& \propto p\left(z_{t} \mid x_{t-1}\right)
\end{aligned}
$$

Sampled Motion Model

Particle Filter Localization (Sonar)

Aibo Sensor Model

Distributions for $P(z \mid x)$

Localization for AIBO robots

WiFi-Based People Tracking

WiFi Sensor Model

Tracking Example

Adaptive Sampling

KLD-Sampling Sonar

Adapt number of particles on the fly based on statistical approximation measure

KLD-Sampling Laser

Robot Mapping

- SLAM: Simultaneous Localization And Mapping
- We do not know the map or our location
- State consists of position AND map!
- Main techniques: Kalman filtering (Gaussian HMMs) and particle methods

Mapping with a Laser Scanner

Rao-Blackwellized Mapping with Scan-Matching

Loop Closure Example

Rao-Blackwellized Mapping with ScanMatching

Rao-Blackwellized Mapping with ScanMatrhing

Example (Intel Lab)

- 15 particles
- four times faster than real-time P4, 2.8GHz
- 5 cm resolution during scan matching
- 1 cm resolution in final map

Outdoor Campus Map

[^0]
[^0]: - 30 particles
 - $250 \times 250 \mathrm{~m}^{2}$
 - 1.088 miles (odometry)
 - 20 cm resolution during scan matching
 - 30 cm resolution in final map

