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Hidden Markov Models

 Markov chains not so useful for most agents
 Eventually you don’t know anything anymore
 Need observations to update your beliefs

 Hidden Markov models (HMMs)
 Underlying Markov chain over states S
 You observe outputs (effects) at each time step
 As a Bayes’ net:

X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN



Example

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:



Hidden Markov Models

 Defines a joint probability distribution:
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Ghostbusters HMM
 P(X1) = uniform
 P(X’|X) = ghosts usually move clockwise,            

     but sometimes move in a random direction or stay put
 P(E|X) = same sensor model as before:

red means close, green means far away.
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HMM Computations

 Given 
 parameters
 evidence E1:n =e1:n

 Inference problems include:
 Filtering, find P(Xt|e1:t) for all t
 Smoothing, find P(Xt|e1:n) for all t
 Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)



Real HMM Examples

 Speech recognition HMMs:
 Observations are acoustic signals (continuous valued)
 States are specific positions in specific words (so, tens of thousands)
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Real HMM Examples

 Machine translation HMMs:
 Observations are words (tens of thousands)
 States are translation options
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Real HMM Examples

 Robot tracking:
 Observations are range readings (continuous)
 States are positions on a map (continuous)

X2

E1

X1 X3 X4

E1 E3 E4



Conditional Independence

 HMMs have two important independence properties:
 Markov hidden process, future depends on past via the present
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Conditional Independence

 HMMs have two important independence properties:
 Markov hidden process, future depends on past via the present
 Current observation independent of all else given current state
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Conditional Independence

 HMMs have two important independence properties:
 Markov hidden process, future depends on past via the present
 Current observation independent of all else given current state

 Quiz: does this mean that observations are independent given no evidence?
 [No, correlated by the hidden state]
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Filtering / Monitoring

 Filtering, or monitoring, is the task of tracking the distribution B(X) (the belief state) 
over time

 We start with B(X) in an initial setting, usually uniform

 As time passes, or we get observations, we update B(X)

 The Kalman filter (one method – Real valued values)
 invented in the 60’s as a method of trajectory estimation for the Apollo program



Example: Robot Localization

t=0
Sensor model: can read in which directions there is a wall, 

never more than 1 mistake
Motion model: may not execute action with small prob.

10Prob

Example from 
Michael Pfeiffer



Example: Robot Localization

t=1
Lighter grey: was possible to get the reading, but less likely b/c 

required 1 mistake

10Prob



Example: Robot Localization

t=2

10Prob



Example: Robot Localization

t=3

10Prob



Example: Robot Localization

t=4

10Prob



Example: Robot Localization

t=5

10Prob



Inference Recap: Simple Cases
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Online Belief Updates

 Every time step, we start with current P(X | evidence)
 We update for time:

 We update for evidence:

 The forward algorithm does both at once (and doesn’t normalize)
 Problem: space is |X| and time is |X|2 per time step
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Passage of Time

 Assume we have current belief P(X | evidence to date)

 Then, after one time step passes:

 Or, compactly:

 Basic idea: beliefs get “pushed” through the transitions
 With the “B” notation, we have to be careful about what time step t the belief is about, and 

what evidence it includes
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Example: Passage of Time

 As time passes, uncertainty “accumulates”

T = 1 T = 2 T = 5

Transition model: ghosts usually go clockwise



Observation

 Assume we have current belief P(X | previous evidence):

 Then:

 Or:

 Basic idea: beliefs reweighted by likelihood of evidence

 Unlike passage of time, we have to renormalize
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Example: Observation

 As we get observations, beliefs get reweighted, uncertainty 
“decreases”

Before observation After observation



Example: Run the Filter

 An HMM is defined by:
 Initial distribution:
 Transitions:
 Emissions:



Example HMM



Summary: Filtering

 Filtering is the inference process of finding a distribution over XT given e1 through eT : P( 
XT | e1:t )

 We first compute P( X1 | e1 ):

 For each t from 2 to T, we have P( Xt-1 | e1:t-1 ) 

 Elapse time: compute P( Xt | e1:t-1 )

 Observe: compute P(Xt | e1:t-1 , et) = P( Xt | e1:t )



Robot Localization

 In robot localization:
 We know the map, but not the robot’s position
 Observations may be vectors of range finder readings
 State space and readings are typically continuous (works 

basically like a very fine grid) and so we cannot store B(X)
 Particle filtering is a main technique



GP-Based WiFi Sensor Model
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Bayes Filter for Robot 
Localization



Representations for Bayesian 
Robot Localization

Discrete approaches (’95)
•  Topological representation (’95)

•  uncertainty handling (POMDPs)
•  occas. global localization, recovery

•  Grid-based, metric representation 
(’96)
•  global localization, recovery

Multi-hypothesis (’00)
•  multiple Kalman filters
•  global localization, recovery

Particle filters (’99)
•  sample-based representation
•  global localization, recovery

Kalman filters (late-80s)
•  Gaussians, unimodal
•  approximately linear models
•  position tracking

AI

Robotics



Occupancy Map

CAD map occupancy grid map



Piecewise Constant Representation
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Proximity Sensors



Proximity Sensor Model

Laser sensor Sonar sensor
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Beam-based Sensor Model

 Scan z consists of K measurements.

 Individual measurements are independent given the robot 
position.
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Example

z P(z|x,m)



Probabilistic Kinematics
•  Robot moves from               to            . 
•  Odometry information                           . 
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Probabilistic Kinematics

 Odometry information is inherently noisy.
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Sonars and Occupancy Grid Map 



Laser-based Localization



Museum Tourguide Minerva



Best Explanation Queries

 Query: most likely seq:
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State Path Trellis
 State trellis: graph of states and transitions over time

 Each arc represents some transition
 Each arc has weight
 Each path is a sequence of states
 The product of weights on a path is the seq’s probability
 Can think of the Forward (and now Viterbi) algorithms as computing sums of all 

paths (best paths) in this graph
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Viterbi Algorithm
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Example
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Recap: Reasoning Over Time

 Stationary Markov models
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 Hidden Markov models
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