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Hidden Markov Models

" Markov chains not so useful for most agents
" Eventually you don’t know anything anymore
" Need observations to update your beliefs

®" Hidden Markov models (HMMs)

" Underlying Markov chain over states S
" You observe outputs (effects) at each time step
" As a Bayes’ net:
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" An HMM is defined by:
" |nitial distribution: P(X1)
" Transitions: P(X¢| Xe—1)
" Emissions: P(FE|X)




Hidden Markov Models
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" Defines a joint probability distribution:
P{Xla" s Xn, B, "1Eﬂ} —
P{Xl:ﬂsEl:n} —

N
P(X1)P(E1X1) || P(Xe| Xi1) P(Ee| X+)
=2



Ghostbusters HMM

P(X,) = uniform
P(X’|X) = ghosts usually move clockwise,
but sometimes move in a random direction or stay put

P(E|X) = same sensor model as before:
red means close, green means far away.

P(X'|X=<1,2>)

P(red | 3) P(orange | 3) P(yellow | 3) P(green | 3)
P(E[X)

0.05 0.15 0.5 0.3

Etc... (must specify for other distances)



HMM Computations

" Given
" parameters
" evidence E,., =€, ,

" Inference problems include:
= Filtering, find P(X,|e,.) for all t

= Smoothing, find P(X,|e,.,) for all t

" Most probable explanation, find
X*l:n — argmaXXLn P(Xlznlelzn)



Real HMM Examples

" Speech recognition HMMs:
" Observations are acoustic signals (continuous valued)
= States are specific positions in specific words (so, tens of thousands)
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Real HMM Examples

" Machine translation HMMs:

" Observations are words (tens of thousands)
" States are translation options
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Real HMM Examples

" Robot tracking:
" Observations are range readings (continuous)
" States are positions on a map (continuous)
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Conditional Independence

" HMMs have two important independence properties:
" Markov hidden process, future depends on past via the present




Conditional Independence

" HMMs have two important independence properties:
" Markov hidden process, future depends on past via the present
" Current observation independent of all else given current state




Conditional Independence

" HMMs have two important independence properties:
" Markov hidden process, future depends on past via the present
" Current observation independent of all else given current state
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" Ouiz: does this mean that observations are indenendent given no evidence?



Filtering / Monitoring

Filtering, or monitoring, is the task of tracking the distribution B(X) (the belief state)
over time

We start with B(X) in an initial setting, usually uniform

As time passes, or we get observations, we update B(X)

The Kalman filter (one method - Real valued values)
" invented in the 60’s as a method of trajectory estimation for the Apollo program



Example: Robot Localization

Example from
Michael Pfeiffer

B 0
Prob 0 1

t=0
Sensor model: can read in which directions there is a wall,
never more than 1 mistake

Motion model: may not execute action with small prob.




Example: Robot Localization

B 0
Prob 0 1

t=1
Lighter grey: was possible to get the reading, but less likely b/c
required 1 mistake




Example: Robot Localization

Prob 0 1

t=2



Example: Robot Localization

Prob 0 1

t=3



Example: Robot Localization

Prob 0 1



Example: Robot Localization

Prob 0 1



Inference Recap: Simple Cases

P(X1le1) P2
P($1|€1) — P((L‘l,el)/P(el) P(332) — ZP(SC]_, 562)

o<x, P(x1,e1)

= > P(xz1)P(xz2|z1)
— P(x1)P(e1|xq) 1



Online Belief Updates

Every time step, we start with current P(X | evidence)

We update for time:
CO—CD

P(xiler1—1) = > P(zi—1le1:4—1) - P(xt]ze—1)

Lt—1

We update for evidence:

P(xtler:t) oxx P(ailert—1) - P(eg|xzt)

The forward algorithm does both at once (and doesn’t normalize)
Problem: space is | X| and time is | X|? per time step




Passage of Time

= Assume we have current belief P(X | evidence to date)

B(Xt) = P(Xtle1:t)
" Then, after one time step passes: @—»@

P(Xiq1le1:e) = D> P(Xig1lze) P(zeler:t)
Tt
" Or, compactly:
B'(X") =Y P(X'|z)B(=z)
€T

" Basic idea: beliefs get “pushed” through the transitions

" With the “B” notation, we have to be careful about what time step t the belief is about, and
what evidence it includes



Example: Passage of Time

" As time passes, uncertainty “accumulates”
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T=1 T=2 T=5

B'(X") =Y P(X'z)B(x)

Transition model: ghosts usually go clockwise



Observation

Assume we have current belief P(X | previous evidence):

B'(Xi41) = P(Xi41le1:t)
Then:

P(Xiq4qle1:441) o< P(epq1|Xeq-1) P( X4 1]e1-4)

Or:
B(X;41) o< P(e|X)B'(X;41)

Basic idea: beliefs reweighted by likelihood of evidence

Unlike passage of time, we have to renormalize



Example: Observation

" As we get observations, beliefs get reweighted, uncertainty
“decreases”

Before observation After observation

B(X) x P(e|X)B'(X)



Example: Run the Filter
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" An HMM is defined by:
" |nitial distribution: P(X1)
" Transitions: P(X¢| Xe—1)
" Emissions: P(FE|X)




Example HMM

0.500 0.627
0.500 0.373
True 0.500 O.J‘IB 0.483
False 0.500 0.182 0.117




Summary: Filtering

Filtering is the inference process of finding a distribution over X. given e, through e. : P(
XTleH)

We first compute P( X, | e, ): P(xi|ley) oc P(x1) - P(e1|xy)
Foreach t from 2to T, we have P( X, | e, ,)

Elapse time: compute P(X, | e,..,)
P($t|€1:t—1) — E P(ZCt—1|€1:t—1) . P($t|$t—1)

Tt—1

Observe: compute P(X. | e,.,,€) =P( X, ]| e,.)

P(xiler.r) o< P(xeler.t—1) - Pleg|xs)



Robot Localization

" |n robot localization:
" We know the map, but not the robot’s position
" Observations may be vectors of range finder readings

" State space and readings are typically continuous (works
basically like a very fine grid) and so we cannot store B(X)

" Particle filtering is a main technique

FiobotLocalisation. avi
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Bayes Filters: Framework

e Given:
e Stream of observations z and action data u:
d,=U,2, ..., U, Z,}
e Sensor model P(z|x).
e Action model P(x|u,x’).
e Prior probability of the system state P(x).

e Wanted:

e Estimate of the state X of a dynamical system.
e The posterior of the state is also called Belief:

Bel(xt)=P(xt |u1922 U, t)

30



Bayes Filter for Robot
Localization

Pfols)
Fy
Bel(s)
h
Bel(s)




Representations for Bayesian

Robot Localization

-

Discrete approaches (’95)
* Topological representation ('95)
* uncertainty handling (POMDPSs)
* occas. global localization, recovery
* Grid-based, metric representation
('96)
* global localization, recovery

Particle filters ("'99)
* sample-based representation
* global localization, recovery

\_

/Kalman filters (late-80s) \

* (Gaussians, unimodal
* approximately linear models
* position tracking

Robotics

Multi-hypothesis ('00)
* multiple Kalman filters
* global localization, recovery

/

N /




Occupancy Map
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Constant Representati
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Proximity Sensors

35
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Beam-based Sensor Model

" Scan z consists of K measurements.

Z =A2,,Z,,...,2¢ }

" Individual measurements are independent given the robot
position.

P(z | x, m) ZﬁP(zk | X, m)

37



Example

P(z|x,m)

38



Probabilistic Kinematics

* Robot moves from < 9>to <X Yo 6’>
* Odometry information |, _<5 S S >

rot1? rot 22 trans

trans _\/(—' _) +(—' —)
S ., —atan2(y'- y,X'-X)- 0

S ., =0'-0-935_, /5




Probabilistic Kinematics

" Odometry information is inherently noisy.

p(x|u,x’)

X’ X’
u




Sonars and Occupancy Grid Map

Om

2



Laser-based Localization




Museum Tourguide Minerva




Best Explanation Queries

" Query: most likely seq:

arg max P(x1:¢|le1:¢)
-t



State Path Trellis

" State trellis: graph of states and transitions over time
sun >< sun >< sun >< sun
rain rain rain rain

X1 X XN

" Each arc represents some transition x;_ 1 — @x¢

" Each arc has weight P(x¢|xi_1)P(et|xt)

" Each path is a sequence of states

" The product of weights on a path is the seq’s probability

" Can think of the Forward (and now Viterbi) algorithms as computing sums of all
paths (best paths) in this graph



Lq-T

My [x4]

Viterbi Algorithm
e e

= arg max P(xy.7|e1.7) = arg max P(x1:7,e1:7)
xTr1-T 1.1

max P(x1-+_1.x+. €1 -
max P(x1:t—1,Tt, €1:¢)

max P(x1:x—1,e1:1—1) P(xe|ze—1) Plet|ze)

= P(e¢|xry) max P(x¢|lxe—1) Mmax P(x1:4—1,€1:4—1)
t—1 L1:t—2

= P(e¢|xy) CriEns P(x¢|lze_1)my_1[rs_1] 22



Example

Rain Rain 2 Rain 5 Rain 4 Rain g

state [ |
space - - ‘ |
paths _ , .

- false Jalse Jalse false Jalse
umbrella Jalse

- . 8182 5155 .0361
most
likely <
BEINS . 1818 0491 1237

I.nl:l : rnl:3 m1:4 ml‘:



Recap: Reasoning Over Time

" Stationary Markov models

0.3 0.7
ram sStin
> 0.3
P(E|X)

X E P
rain umbrella 0.9
rain no umbrella 0.1
sun umbrella 0.2
sun no umbrella 0.8
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