CSE 473: Artificial Intelligence

Hidden Markov Models

Dieter Fox ---- University of Washington

[Most slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to AI at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Hidden Markov Models

Markov chains not so useful for most agents

- Eventually you don't know anything anymore
- Need observations to update your beliefs

Hidden Markov models (HMMs)

- Underlying Markov chain over states S
- You observe outputs (effects) at each time step
- As a Bayes' net:

Example

- An HMM is defined by:
 - Initial distribution:
 - Transitions:
 - Emissions:

 $P(X_1)$ $P(X_t|X_{t-1})$ P(E|X)

Hidden Markov Models

Defines a joint probability distribution:

$$P(X_1, \dots, X_n, E_1, \dots, E_n) =$$

 $P(X_{1:n}, E_{1:n}) =$
 $P(X_1)P(E_1|X_1)\prod_{t=2}^N P(X_t|X_{t-1})P(E_t|X_t)$

Ghostbusters HMM

but sometimes move in a random direction or stay put

P(X' | X) = ghosts usually move clockwise,

P(E|X) = same sensor model as before:

• $P(X_1) = uniform$

P(E)

1/9	1/9	1/9			
1/9	1/9	1/9			
1/9 1/9 1/9					
P(X ₁)					

	P(red 3)	P(orange 3)	P(yellow 3)	P(green 3)
X)	0.05	0.15	0.5	0.3

Etc... (must specify for other distances)

HMM Computations

- Given
 - parameters
 - evidence $E_{1:n} = e_{1:n}$
- Inference problems include:
 - Filtering, find $P(X_t|e_{1:t})$ for all t
 - Smoothing, find $P(X_t|e_{1:n})$ for all t
 - Most probable explanation, find $x^* = argmax$

 $x_{1:n}^* = \operatorname{argmax}_{x_{1:n}} P(x_{1:n} | e_{1:n})$

Real HMM Examples

Speech recognition HMMs:

- Observations are acoustic signals (continuous valued)
- States are specific positions in specific words (so, tens of thousands)

Real HMM Examples

- Machine translation HMMs:
 - Observations are words (tens of thousands)
 - States are translation options

Real HMM Examples

Robot tracking:

- Observations are range readings (continuous)
- States are positions on a map (continuous)

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state

Conditional Independence

- HMMs have two important independence properties:
 - Markov hidden process, future depends on past via the present
 - Current observation independent of all else given current state

• Quiz: does this mean that observations are independent given no evidence?

Filtering / Monitoring

- Filtering, or monitoring, is the task of tracking the distribution B(X) (the belief state) over time
- We start with B(X) in an initial setting, usually uniform
- As time passes, or we get observations, we update B(X)

- The Kalman filter (one method Real valued values)
 - invented in the 60's as a method of trajectory estimation for the Apollo program

Sensor model: can read in which directions there is a wall, never more than 1 mistake

Motion model: may not execute action with small prob.

t=2

t=4

t=5

Inference Recap: Simple Cases

Online Belief Updates

- Every time step, we start with current P(X | evidence)
- We update for time:

 X_{2}

 \mathbf{E}_2

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

• We update for evidence:

$$P(x_t|e_{1:t}) \propto_X P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$$

- The forward algorithm does both at once (and doesn't normalize)
- Problem: space is |X| and time is |X|² per time step

Passage of Time

Assume we have current belief P(X | evidence to date)

$$B(X_t) = P(X_t | e_{1:t})$$

Then, after one time step passes:

$$P(X_{t+1}|e_{1:t}) = \sum_{x_t} P(X_{t+1}|x_t) P(x_t|e_{1:t})$$

• Or, compactly:

$$B'(X') = \sum_{x} P(X'|x) B(x)$$

- Basic idea: beliefs get "pushed" through the transitions
 - With the "B" notation, we have to be careful about what time step t the belief is about, and what evidence it includes

Example: Passage of Time

As time passes, uncertainty "accumulates"

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	1.00	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

<0.01	<0.01	<0.01	<0.01	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01
<0.01	0.76	0.06	0.06	<0.01	<0.01
<0.01	<0.01	0.06	<0.01	<0.01	<0.01

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

T = 1

$$T = 2$$

T = 5

$$B'(X') = \sum_{x} P(X'|x)B(x)$$

Transition model: ghosts usually go clockwise

Observation

Assume we have current belief P(X | previous evidence):

 $B'(X_{t+1}) = P(X_{t+1}|e_{1:t})$

• Then:

 $P(X_{t+1}|e_{1:t+1}) \propto P(e_{t+1}|X_{t+1})P(X_{t+1}|e_{1:t})$

• Or:

 $B(X_{t+1}) \propto P(e|X)B'(X_{t+1})$

- Basic idea: beliefs reweighted by likelihood of evidence
- Unlike passage of time, we have to renormalize

Example: Observation

As we get observations, beliefs get reweighted, uncertainty "decreases"

0.05	0.01	0.05	<0.01	<0.01	<0.01
0.02	0.14	0.11	0.35	<0.01	<0.01
0.07	0.03	0.05	<0.01	0.03	<0.01
0.03	0.03	<0.01	<0.01	<0.01	<0.01

Before observation

<0.01	<0.01	<0.01	<0.01	0.02	<0.01
<0.01	<0.01	<0.01	0.83	0.02	<0.01
<0.01	<0.01	0.11	<0.01	<0.01	<0.01
<0.01	<0.01	<0.01	<0.01	<0.01	<0.01

After observation

 $B(X) \propto P(e|X)B'(X)$

Example: Run the Filter

- An HMM is defined by:
 - Initial distribution:
 - Transitions:
 - Emissions:

 $P(X_1)$ $P(X_t|X_{t-1})$ P(E|X)

Example HMM

Summary: Filtering

- Filtering is the inference process of finding a distribution over X_T given e₁ through e_T : P(
 X_T | e_{1:t})
- We first compute P($X_1 | e_1$):
- For each t from 2 to T, we have P($X_{t-1} | e_{1:t-1}$)
- Elapse time: compute P(X_t | e_{1:t-1})

$$P(x_t|e_{1:t-1}) = \sum_{x_{t-1}} P(x_{t-1}|e_{1:t-1}) \cdot P(x_t|x_{t-1})$$

 $P(x_1|e_1) \propto P(x_1) \cdot P(e_1|x_1)$

• Observe: compute $P(X_t | e_{1:t-1}, e_t) = P(X_t | e_{1:t})$

 $P(x_t|e_{1:t}) \propto P(x_t|e_{1:t-1}) \cdot P(e_t|x_t)$

Robot Localization

In robot localization:

- We know the map, but not the robot's position
- Observations may be vectors of range finder readings
- State space and readings are typically continuous (works basically like a very fine grid) and so we cannot store B(X)
- Particle filtering is a main technique

Bayes Filters: Framework

• Given:

• Stream of observations z and action data u:

$$d_t = \{u_1, z_2, \dots, u_{t-1}, z_t\}$$

- Sensor model P(z|x).
- Action model P(x|u,x').
- Prior probability of the system state P(x).

• Wanted:

- Estimate of the state X of a dynamical system.
- The posterior of the state is also called **Belief**:

$$Bel(x_t) = P(x_t | u_1, z_2 ..., u_{t-1}, z_t)$$

Representations for Bayesian Robot Localization

A

Discrete approaches ('95)

- Topological representation ('95)
 - uncertainty handling (POMDPs)
 - occas. global localization, recovery
- Grid-based, metric representation ('96)
 - global localization, recovery

Particle filters ('99)

- sample-based representation
- global localization, recovery

Kalman filters (late-80s)

- Gaussians, unimodal
- approximately linear models
- position tracking

Robotics

Multi-hypothesis ('00)

- multiple Kalman filters
- global localization, recovery

Occupancy Map

occupancy grid map

Piecewise Constant Representation

Proximity Sensors

Proximity Sensor Model

Scan z consists of K measurements.

$$z = \{z_1, z_2, ..., z_K\}$$

Individual measurements are independent given the robot position.

$$P(z \mid x, m) = \prod_{k=1}^{K} P(z_k \mid x, m)$$

Example

Ζ

P(z|x,m)

Probabilistic Kinematics

- Robot moves from $\langle \overline{x}, \overline{y}, \overline{\theta} \rangle$ to $\langle \overline{x}', \overline{y}', \overline{\theta}' \rangle$ Odometry information $u = \langle \delta_{not 1}, \delta_{not 2}, \delta_{trans} \rangle$

$$\delta_{trans} = \sqrt{(\overline{x}' - \overline{x})^2 + (\overline{y}' - \overline{y})^2}$$

$$\delta_{rot 1} = \operatorname{atan2}(\overline{y}' - \overline{y}, \overline{x}' - \overline{x}) - \overline{\theta}$$

$$\delta_{rot 2} = \overline{\theta}' - \overline{\theta} - \delta_{rot 1}$$

$$\langle \overline{x}, \overline{y}, \overline{\theta}' \rangle$$

$$\delta_{rot 2} = \delta_{rot 1}$$

Probabilistic Kinematics

Odometry information is inherently noisy.

Sonars and Occupancy Grid Map

Robot position (A)

Laser-based Localization

Museum Tourguide Minerva

Best Explanation Queries

Query: most likely seq:

$$\arg\max_{x_{1:t}} P(x_{1:t}|e_{1:t})$$

State Path Trellis

• State trellis: graph of states and transitions over time

- Each arc represents some transition $x_{t-1} \rightarrow x_t$
- Each arc has weight $P(x_t|x_{t-1})P(e_t|x_t)$
- Each path is a sequence of states
- The product of weights on a path is the seq's probability
- Can think of the Forward (and now Viterbi) algorithms as computing sums of all paths (best paths) in this graph

Viterbi Algorithm

$$\begin{aligned} x_{1:T}^* &= \operatorname*{arg\,max}_{x_{1:T}} P(x_{1:T}|e_{1:T}) = \operatorname*{arg\,max}_{x_{1:T}} P(x_{1:T}, e_{1:T}) \\ m_t[x_t] &= \max_{x_{1:t-1}} P(x_{1:t-1}, x_t, e_{1:t}) \\ &= \max_{x_{1:t-1}} P(x_{1:t-1}, e_{1:t-1}) P(x_t|x_{t-1}) P(e_t|x_t) \\ &= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) \max_{x_{1:t-2}} P(x_{1:t-1}, e_{1:t-1}) \\ &= P(e_t|x_t) \max_{x_{t-1}} P(x_t|x_{t-1}) m_{t-1}[x_{t-1}] \end{aligned}$$

Example

Recap: Reasoning Over Time

