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Exploration vs. Exploitation

How to Explore?

Video of Demo Q-learning — Manual Exploration — Bridge Grid

= Several schemes for forcing exploration
= Simplest: random actions (g-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-g, act on current policy

= Problems with random actions?
= You do eventually explore the space, but keep
thrashing around once learning is done
= One solution: lower € over time
= Another solution: exploration functions

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring —
= Exploration function q@b

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u.n) = u -+ k/n

Regular Q-Update:  Q(s,a) <o R(s,a.s") +~maxQ(s,a’)
Modified Q-Update: Q(s,a) < R(s.a,s") +~max f(Q(s'.a). N(s',a")

= Note: this propagates the “bonus” back to states that lead to unknown states as well!




Video of Demo Q-learning — Exploration Function — Crawler

Regret

Even if you learn the optimal policy,
you still make mistakes along the way! ¢

Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

Minimizing regret goes beyond
learning to be optimal it requires
optimally learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

* Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
Generalize that experience to new, similar situations

This is a fundamental idea in machine learning, and we'll
see it over and over again

[demo — RL pacman]

Example: Pacman

Video of Demo Q-Learning Pacman — Tiny — Watch All

Let’s say we discover Or even this one!
through experience

that this state is bad:

In naive g-learning,
we know nothing
about this state:

[Demo: Q-learning — pacman ~ tiny - watch all (L11D5)]
[Demo: Q-learning ~ pacman ~ tiny - silent train (L11D6)]
[Demo; Q-learning - pacman — tricky — watch all (11107)]




Video of Demo Q-Learning Pacman — Tiny — Silent Train

Video of Demo Q-Learning Pacman — Tricky — Watch All

Feature-Based Representations

Linear Value Functions

= Solution: describe a state using a vector of
features (aka “properties”)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
* 1/(dist to dot)?
= Is Pacman in a tunnel? (0/1)
.etc.
= Is it the exact state on this slide?
* Can also describe a g-state (s, a) with features (e.g.
action moves closer to foo

Using a feature representation, we can write a g function (or value function) for any
state using a few weights:

V(s) = w1 f1(s) + wafa(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)twafa(s,a)+...+wnfn(s,a)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

Example: Q-Pacman

[ Q(s,a) = wy f1(s,a)Fwafa(s,a)+...+wnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference =
Q(s,a) — Q(s,a) + «[difference] Exact Q's

w; — w; + o [difference] f;(s,a)  Approximate Q's

r +nn§xz3(d.u')‘ Q(s,a)

Intuitive interpretation:
= Adjust weights of active features
= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

Formal justification: online least squares

Q(s,a) = 4.0fpor(s,a) — 1.0fgsr(s, a)

fpor(s,NORTH) = 0.5

a = NORTH
r = —500
fesT(s,NORTH) = 1.0

Q(s,NORTH) = +1
r+ymaxQ(s',a’) = 500 + 0
a

difference = —501 |:> wpor + 4.0+ a[-501]0.5
wgsp < —1.0 4+« [-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgs7(s,a)  wemo: approsimate @

Jearning pacman (L11D10)]




Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression*

Optimization: Least Squares*

f1(x)

Prediction: Prediction:

g = wo + w1 f1(z) §i = wo + w1 f1(x) + wafa(x)
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Minimizing Error*

Overfitting: Why Limiting Capacity Can Help*

Imagine we had only one point x, with features f(x), target value y, and weights w:
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Approximate q update explained:
Wi — W+ a [/‘ +vmaxQ(s',a') — Q(s_u)] Fm(s,a)

“target” “prediction”




Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
= E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions
= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function

= Nudge each feature weight up and down and see if your policy is better than before

= Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

[Andrew Ng] [Video: HELICOPTER]

PILCO (Probabilistic Inference for Learning Control)

Demo: Standard Benchmark Problem

policy scarch

init. 0 (random)
apply random actions | record data =

Policy evaluation J(0)
policy gradient d.//d¢

apply poli
to robot

+ Model-based policy search to minimize given cost function
« Policy: mapping from state to control
« Rollout: plan using current policy and GP dynamics model
+ Policy parameter update via CG/BFGS
« Highly data efficient
[Deisenroth-etal, ICML-11, RSS-11, ICRA-14, PAMI-14]

Swing pendulum up and
balance in inverted position

Learn nonlinear control from
scratch

4D state space, 300 controlle
parameters

7 trials/17.5 sec experience
Control freq.: 10 Hz

trial #1 (random actions)




Controlling a Low-Cost Robotic Manipulator

Playing Atari with Deep Reinforcement Learning

Low-cost system (8500 for robot arm and Kinect)
Very noisy

No sensor information about robot's joint
configuration used

Goal: Learn to stack tower of 5 blocks from
scratch

Kinect camera for tracking block in end-effector
State: coordinates (3D) of block center (from
Kinect camera)

4 controlled DoF

20 learning trials for stacking 5 blocks (5 seconds
iong each)

Account for system noise, e.g.,

- Image processing

Deep Network Structure
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Deep learning: Representation

Deep learning: Supervised training via SGD

Sequence of functions parameterized via w;
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Learning to Detect Hands and Parts
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Hand bounding box
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Learning to Detect Hands and Parts
Hand‘ boundir;g box
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MANT 38

Learning to Detect Hands and Parts

Model-based refinement

MANT

detected by deep net
ored skeleton: matched via DART

MANT 40

Deep Network Structure

Deepmind Al Playing Atari
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That's all for Reinforcement Learning!

Conclusion

Data (experiences with

Reinforcement Learning
environment)

Agent

= Very tough problem: How to perform any task well in an
unknown, noisy environment!

= Traditionally used mostly for robotics, but becoming more widely
used

= Lots of open research areas:
= How to best balance exploration and exploitation?

= How to deal with cases where we don’t know a good state/feature
representation?

= We're done with Part I: Search and Planning!

= We've seen how Al methods can solve
problems in:
= Search
= Constraint Satisfaction Problems
= Games
= Markov Decision Problems
= Reinforcement Learning

Midterm Topics

= Agency: types of agents, types of environments
= Search
= Formulating a problem in terms of search
= Algorithms: DFS, BFS, IDS, best-first, uniform-cost, A*, local
= Heuristics: admissibility, consistency, creation
= Constraints: formulation, search, forward checking, arc-consistency, structure

= Adversarial: min/max, alpha-beta, expectimax
= MDPs

= Formulation, Bellman eqns, V*, Q*, backups, value iteration, policy iteration
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