Exploration vs. Exploitation

How to Explore?

- Several schemes for forcing exploration
 - Simplest: random actions (ϵ-greedy)
 - Every time step, flip a coin
 - With (small) probability ϵ, act randomly
 - With (large) probability $1-\epsilon$, act on current policy

- Problems with random actions?
 - You do eventually explore the space, but keep thrashing around once learning is done
 - One solution: lower ϵ over time
 - Another solution: exploration functions

Video of Demo Q-learning – Manual Exploration – Bridge Grid

Video of Demo Q-learning – Epsilon-Greedy – Crawler

Exploration Functions

- When to explore?
 - Random actions: explore a fixed amount
 - Better idea: explore areas whose badness is not (yet) established, eventually stop exploring

- Exploration function
 - Takes a value estimate u and a visit count n, and returns an optimistic utility, e.g. $f(u, n) = u + k/n$

 Regular Q-Update: $Q(s, a) = \beta Q(s, a) + \gamma \max_a Q(s', a)$

 Modified Q-Update: $Q(s, a) = \beta Q(s, a) + \gamma \max_a [Q(s', a) + f(Q(s', a), N(s', a))]$

 Note: this propagates the "bonus" back to states that lead to unknown states as well
Regret

- Even if you learn the optimal policy, you still make mistakes along the way!
- Regret is a measure of your total mistake cost: the difference between your (expected) rewards, including youthful suboptimality, and optimal (expected) rewards.
- Minimizing regret goes beyond learning to be optimal – it requires optimally learning to be optimal!
- Example: random exploration and exploration functions both end up optimal, but random exploration has higher regret.

Approximate Q-Learning

- Basic Q-Learning keeps a table of all q-values.
- In realistic situations, we cannot possibly learn about every single state!
 - Too many states to visit them all in training.
 - Too many states to hold the q-tables in memory.
- Instead, we want to generalize:
 - Learn about some small number of training states from experience.
 - Generalize that experience to new, similar situations.
- This is a fundamental idea in machine learning, and we'll see it over and over again.

Generalizing Across States

Example: Pacman

- Let’s say we discover through experience that this state is bad.
- In naïve q-learning, we know nothing about this state.
- Or even this one?

Video of Demo Q-Learning Pacman – Tiny – Watch All
Feature-Based Representations

- Solution: describe a state using a vector of features (aka "properties")
- Features are functions from states to real numbers (often 0/1) that capture important properties of the state.
- Example features:
 - Distance to closest ghost
 - Distance to closest dot
 - Number of ghosts
 - 1 (state is alive)
 - Is agent in a tunnel? (0/1)
 - ... etc.
- Is it the exact state on this slide?
- Can also describe a q-state (s, a) with features (e.g., action moves closer to food).

Linear Value Functions

- Using a feature representation, we can write a q function (or value function) for any state using a few weights:

 \[V(s) = w_1 f_1(s) + w_2 f_2(s) + \ldots + w_n f_n(s) \]

 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Advantage: our experience is summed up in a few powerful numbers
- Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

- Q-learning with linear Q-functions:

 \[Q(s, a) = w_1 f_1(s, a) + w_2 f_2(s, a) + \ldots + w_n f_n(s, a) \]

- Intuitive interpretation:
 - Adjust weights of active features
 - E.g., if something unexpectedly bad happens, blame the features that were on: disprefer all states with that state’s features
- Formal justification: online least squares

Example: Q-Pacman

- Example:

 \[Q(s, a) = 4.0 f_{DOF}(s, a) - 1.0 f_{GUST}(s, a) \]

 \[f_{DOF}(s, \text{NORTH}) = 0.5 \]

 \[f_{GUST}(s, \text{NORTH}) = 1.0 \]

 \[Q(s', \text{NORTH}) = 1.0 \]

 \[Q(s', \text{NORTH}) = 0.5 \]

 \[Q(s, a) = 3.0 f_{DOF}(s, a) - 3.0 f_{GUST}(s, a) \]
Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression*

Optimization: Least Squares*

Minimizing Error*

Overfitting: Why Limiting Capacity Can Help*

Imagine we had only one point x, with features $f(x)$, target value y, and weights w:

\[
\text{error}(w) = \frac{1}{2} \left(y - \sum w_i f_i(x) \right)^2
\]

\[
\frac{\partial \text{error}(w)}{\partial w_i} = -\sum f_i(x) (y - \sum w_i f_i(x))
\]

\[
w_i \leftarrow w_i + \alpha \left(y - \sum w_i f_i(x) \right) f_i(x)
\]

Approximate q update explained:

\[
w_{\text{approx}} = w_{\text{approx}} + \alpha \left[r + \gamma \max_{a'} Q(s', a') - Q(s, a) \right] f_a(s, a)
\]

“target” “prediction”
Policy Search

Problem: often the feature-based policies that work well (win games, maximize utilities) aren’t the ones that approximate V / Q best.
- E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they still produced good decisions.
- Q-learning’s priority: get Q-values close (modeling)
- Action selection priority: get ordering of Q-values right (prediction)

Solution: learn policies that maximize rewards, not the values that predict them
- Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing on feature weights.

Simplest policy search:
- Start with an initial linear value function or Q-function
- Nudge each feature weight up and down and see if your policy is better than before

Problems:
- How do we tell the policy got better?
- Need to run many sample episodes!
- If there are a lot of features, this can be impractical

Better methods exploit lookahead structure, sample wisely, change multiple parameters...

PILCO (Probabilistic Inference for Learning Control)

- Model-based policy search to minimize given cost function
- Policy: mapping from state to control
- Rollout: plan using current policy and GP dynamics model
- Policy parameter update via CG/BFGS
- Highly data efficient

Demo: Standard Benchmark Problem

- Swing pendulum up and balance in inverted position
- Learn nonlinear control from scratch
- 4D state space, 300 controller parameters
- 7 trials/17.5 sec experience
- Control freq.: 10 Hz
Controlling a Low-Cost Robotic Manipulator

- Low-cost system ($500 for robot arm and Kinect)
- Very noisy
- No sensor information about robot’s joint configuration used
- Goal: Learn to stack tower of 5 blocks from videos
 - Kinect camera for tracking block in end-effector
 - State: coordinates (3D) of block center (from Kinect configuration used)
 - Very noisy
- Robot arm for tracking block in end-effector
- Account for system noise, e.g.,
 - Robot arm
 - Image processing

Abstract

We present the first deep learning model to successfully learn control policies directly from high-dimensional sensory input using reinforcement learning. The model is a convolutional neural network, trained with a variant of Q-learning, whose input is raw pixels and whose output is a value function estimating future rewards. We apply our method to seven Atari 2600 games from the Arcade Learning Environment, with no adjustment of the architecture or learning algorithm. We achieve human-level performance on five of them.

Deep Network Structure

Deep learning: Representation

Sequence of functions parameterized via w_1

$$ x \leftarrow h_1 \leftarrow h_2 \leftarrow \ldots \leftarrow h_{n-1} \leftarrow h_n \leftarrow w_{n+1} \rightarrow y $$

Gradients determined via chain rule / backpropagation

Deep learning: Supervised training via SGD

Given (x, y')

$$ x \leftarrow h_1 \leftarrow h_2 \leftarrow \ldots \leftarrow h_{n-1} \leftarrow h_n \leftarrow w_{n+1} \leftarrow y \leftarrow L(y, y') $$

Update $w_i \leftarrow w_i - \alpha \frac{\partial L}{\partial w_i}$
Learning to Detect Hands and Parts

Detected parts
2D heatmap + distance

Model-based refinement

Green dots: detected by deep net
Colored skeleton: matched via DART

Deep Network Structure

Deepmind AI Playing Atari
That’s all for Reinforcement Learning!

- Very tough problem: How to perform any task well in an unknown, noisy environment!
- Traditionally used mostly for robotics, but becoming more widely used
- Lots of open research areas:
 - How to best balance exploration and exploitation?
 - How to deal with cases where we don’t know a good state/feature representation?

Conclusion

- We’re done with Part I: Search and Planning!
- We’ve seen how AI methods can solve problems in:
 - Search
 - Constraint Satisfaction Problems
 - Games
 - Markov Decision Problems
 - Reinforcement Learning
- Next up: Part II: Uncertainty and Learning!

Midterm Topics

- Agency: types of agents, types of environments
- Search
 - Formulating a problem in terms of search
 - Algorithms: DFS, BFS, IDS, best-first, uniform-cost, A*, local
 - Heuristics: admissibility, consistency, creation
 - Constraints: formulation, search, forward checking, arc-consistency, structure
 - Adversarial: min/max, alpha-beta, expectimax
- MDPs
 - Formulation, Bellman eqns, V^*, Q^*, backups, value iteration, policy iteration