CS 473: Artificial Intelligence
Reinforcement Learning Il

Dieter Fox / University of Washington
[Most slides were taken from Dan Klein and Pieter Abbeel / CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Exploration vs. Exploitation

How to Explore?

Video of Demo Q-learning — Manual Exploration — Bridge Grid

= Several schemes for forcing exploration
= Simplest: random actions (g-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-g, act on current policy

= Problems with random actions?
= You do eventually explore the space, but keep
thrashing around once learning is done
= One solution: lower € over time
= Another solution: exploration functions

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not

(yet) established, eventually stop exploring —
= Exploration function q@b

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u.n) = u -+ k/n

Regular Q-Update: Q(s,a) <o R(s,a.s") +~maxQ(s,a’)
Modified Q-Update: Q(s,a) < R(s.a,s") +~max f(Q(s'.a). N(s',a")

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

Video of Demo Q-learning — Exploration Function — Crawler

Regret

Even if you learn the optimal policy,
you still make mistakes along the way! ¢

Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

Minimizing regret goes beyond
learning to be optimal it requires
optimally learning to be optimal

Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Generalizing Across States

Basic Q-Learning keeps a table of all g-values

In realistic situations, we cannot possibly learn
about every single state!

= Too many states to visit them all in training

* Too many states to hold the g-tables in memory

Instead, we want to generalize:

= Learn about some small number of training states from
experience
Generalize that experience to new, similar situations

This is a fundamental idea in machine learning, and we'll
see it over and over again

[demo — RL pacman]

Example: Pacman

Video of Demo Q-Learning Pacman — Tiny — Watch All

Let’s say we discover Or even this one!
through experience

that this state is bad:

In naive g-learning,
we know nothing
about this state:

[Demo: Q-learning — pacman ~ tiny - watch all (L11D5)]
[Demo: Q-learning ~ pacman ~ tiny - silent train (L11D6)]
[Demo; Q-learning - pacman — tricky — watch all (11107)]

Video of Demo Q-Learning Pacman — Tiny — Silent Train

Video of Demo Q-Learning Pacman — Tricky — Watch All

Feature-Based Representations

Linear Value Functions

= Solution: describe a state using a vector of
features (aka “properties”)
= Features are functions from states to real numbers
(often 0/1) that capture important properties of the
state
= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
* 1/(dist to dot)?
= Is Pacman in a tunnel? (0/1)
.etc.
= Is it the exact state on this slide?
* Can also describe a g-state (s, a) with features (e.g.
action moves closer to foo

Using a feature representation, we can write a g function (or value function) for any
state using a few weights:

V(s) = w1 f1(s) + wafa(s) + ...+ wnfn(s)
Q(s,a) = w1 f1(s,a)twafa(s,a)+...+wnfn(s,a)

Advantage: our experience is summed up in a few powerful numbers

Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

Example: Q-Pacman

[Q(s,a) = wy f1(s,a)Fwafa(s,a)+...+wnfn(s,a)

Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference =
Q(s,a) — Q(s,a) + «[difference] Exact Q's

w; — w; + o [difference] f;(s,a) Approximate Q's

r +nn§xz3(d.u')‘ Q(s,a)

Intuitive interpretation:
= Adjust weights of active features
= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

Formal justification: online least squares

Q(s,a) = 4.0fpor(s,a) — 1.0fgsr(s, a)

fpor(s,NORTH) = 0.5

a = NORTH
r = —500
fesT(s,NORTH) = 1.0

Q(s,NORTH) = +1
r+ymaxQ(s',a’) = 500 + 0
a

difference = —501 |:> wpor + 4.0+ a[-501]0.5
wgsp < —1.0 4+« [-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgs7(s,a) wemo: approsimate @

Jearning pacman (L11D10)]

Video of Demo Approximate Q-Learning -- Pacman

Q-Learning and Least Squares

Linear Approximation: Regression*

Optimization: Least Squares*

f1(x)

Prediction: Prediction:

g = wo + w1 f1(z) §i = wo + w1 f1(x) + wafa(x)

i

2
total error = 3~ (4 =)% = (1~ T
k

N Error or “residual”
Observation

Prediction @ -----------

Minimizing Error*

Overfitting: Why Limiting Capacity Can Help*

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y -3 LL'Afk<J‘))
=

a error(w) _

- = v = 2 wefu(@) | fm(x)
dwnm (J 3 unfi)

wm — wm + a (y - u-,\.f,‘.((z')) fm(z)

"

Approximate q update explained:
Wi — W+ a [/‘ +vmaxQ(s',a') — Q(s_u)] Fm(s,a)

“target” “prediction”

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
= E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions
= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function

= Nudge each feature weight up and down and see if your policy is better than before

= Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
= |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

[Andrew Ng] [Video: HELICOPTER]

PILCO (Probabilistic Inference for Learning Control)

Demo: Standard Benchmark Problem

policy scarch

init. 0 (random)
apply random actions | record data =

Policy evaluation J(0)
policy gradient d.//d¢

apply poli
to robot

+ Model-based policy search to minimize given cost function
« Policy: mapping from state to control
« Rollout: plan using current policy and GP dynamics model
+ Policy parameter update via CG/BFGS
« Highly data efficient
[Deisenroth-etal, ICML-11, RSS-11, ICRA-14, PAMI-14]

Swing pendulum up and
balance in inverted position

Learn nonlinear control from
scratch

4D state space, 300 controlle
parameters

7 trials/17.5 sec experience
Control freq.: 10 Hz

trial #1 (random actions)

Controlling a Low-Cost Robotic Manipulator

Playing Atari with Deep Reinforcement Learning

Low-cost system (8500 for robot arm and Kinect)
Very noisy

No sensor information about robot's joint
configuration used

Goal: Learn to stack tower of 5 blocks from
scratch

Kinect camera for tracking block in end-effector
State: coordinates (3D) of block center (from
Kinect camera)

4 controlled DoF

20 learning trials for stacking 5 blocks (5 seconds
iong each)

Account for system noise, e.g.,

- Image processing

Deep Network Structure

Convguton Convglution Fuly comected Fully cgnected

o
(U

Deep learning: Representation

Deep learning: Supervised training via SGD

Sequence of functions parameterized via w;

x — hy— h, .. h,., — h, —
w, w72 T
oh, ah, ohy oh, ay 9
o T OR C G T OR T R T Oy
ohy Ohy Ohyy ohy, dy
awy aw, OWn_y Iw, Wnsy

Gradients determined via chain rule / backpropagation

MANT 35

Given (x,y*)

x — hy— h, «. h,., — h, — — I *
i 17, 2 n-1 - n o y (A0

oh, ah, ohy oh, ay oL

O T GRS G T R T ORy € oy

1 ! ! ! !
oh, oh, Oh,_y oh, ay
aw, aw, Wy w, Wty

oL
ow;
1ANnT 36

Updatew; <« w;—a

Learning to Detect Hands and Parts

- ,
Hand bounding box

(2D + hiw)
Joons+ Rety)
Conv(D,y,x,¢) = Dz +i, k] Kcli, g k)
(D, y,,¢) %:k o +iy+3 k) 3, K)) gmnm\
ReLU(D,x) = Maa(Dlz],0) Juoca Response Norm
Maz Pool(D, y wa(Dle +i,y +j,c) Joecon.
Fully Connected(D,z,c) = Y Dla+i] K[z +i,c]] Futy Comecod + ol

'] ot
1MAAT 37

Learning to Detect Hands and Parts
Hand‘ boundir;g box

%ﬁﬁ@fm
B po—iI|- Bl

Bounding box Detected parts
2D heatmap + distance

a '
Input depth

MANT 38

Learning to Detect Hands and Parts

Model-based refinement

MANT

detected by deep net
ored skeleton: matched via DART

MANT 40

Deep Network Structure

Deepmind Al Playing Atari

Convguton Convglution Fuly comected Fully cgnected

of] EH =

=" B/ e .
Poceo e

f] EH\= :

f] B =

That's all for Reinforcement Learning!

Conclusion

Data (experiences with

Reinforcement Learning
environment)

Agent

= Very tough problem: How to perform any task well in an
unknown, noisy environment!

= Traditionally used mostly for robotics, but becoming more widely
used

= Lots of open research areas:
= How to best balance exploration and exploitation?

= How to deal with cases where we don’t know a good state/feature
representation?

= We're done with Part I: Search and Planning!

= We've seen how Al methods can solve
problems in:
= Search
= Constraint Satisfaction Problems
= Games
= Markov Decision Problems
= Reinforcement Learning

Midterm Topics

= Agency: types of agents, types of environments
= Search
= Formulating a problem in terms of search
= Algorithms: DFS, BFS, IDS, best-first, uniform-cost, A*, local
= Heuristics: admissibility, consistency, creation
= Constraints: formulation, search, forward checking, arc-consistency, structure

= Adversarial: min/max, alpha-beta, expectimax
= MDPs

= Formulation, Bellman eqns, V*, Q*, backups, value iteration, policy iteration

45

