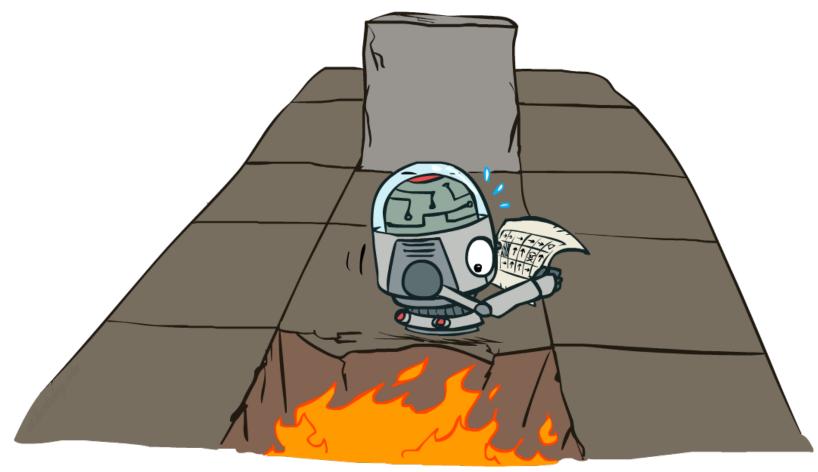
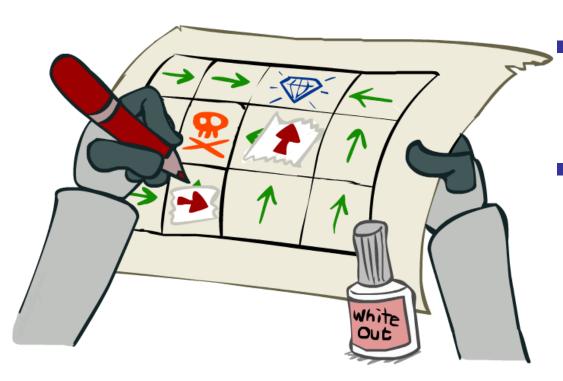
CSE 473: Introduction to Artificial Intelligence

Markov Decision Processes II



Based on slides by: Dan Klein and Pieter Abbeel --- University of California, Berkeley

Solving MDPs

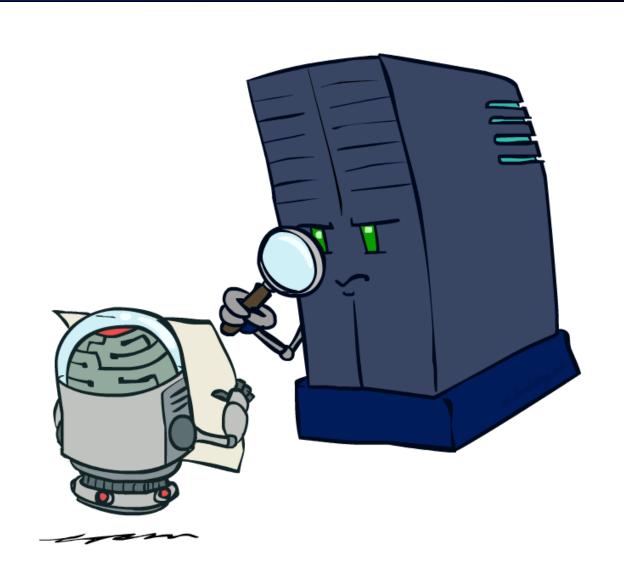


Value Iteration

Policy Iteration

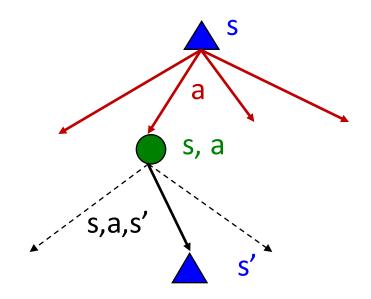
Reinforcement Learning

Policy Evaluation

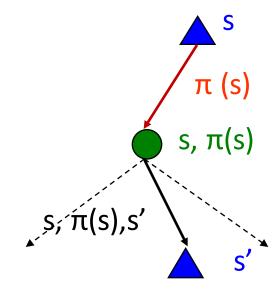


Fixed Policies

Do the optimal action



Do what π says to do

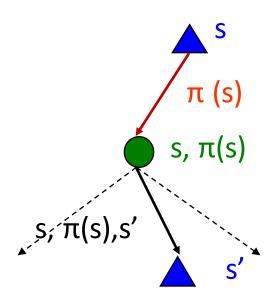


- Expectimax trees max over all actions to compute the optimal values
- If we fixed some policy π (s), then the tree would be simpler only one action per state
 - ... though the tree's value would depend on which policy we fixed

Utilities for a Fixed Policy

- Another basic operation: compute the utility of a state s under a fixed (generally non-optimal) policy
- Define the utility of a state s, under a fixed policy π : V^{π} (s) = expected total discounted rewards starting in s and following π
- Recursive relation (one-step look-ahead / Bellman equation):

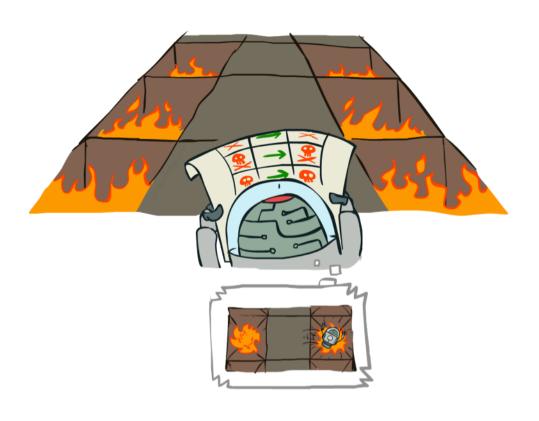
$$V^{\pi}(s) = \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V^{\pi}(s')]$$

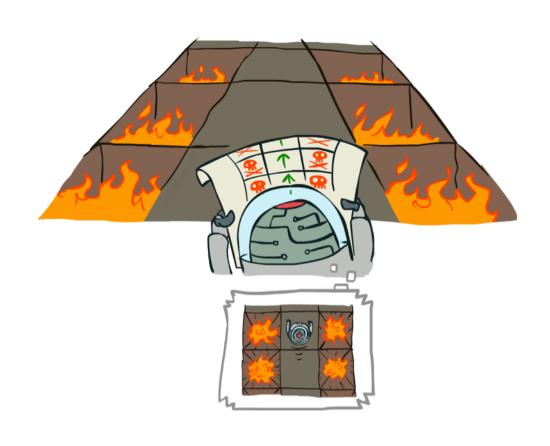


Example: Policy Evaluation

Always Go Right

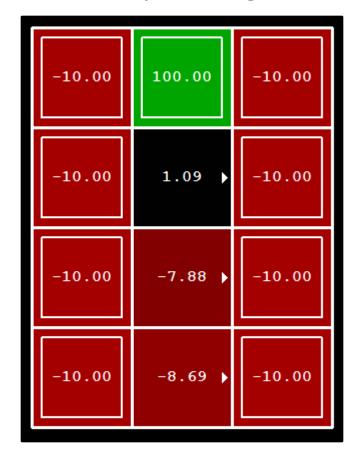
Always Go Forward



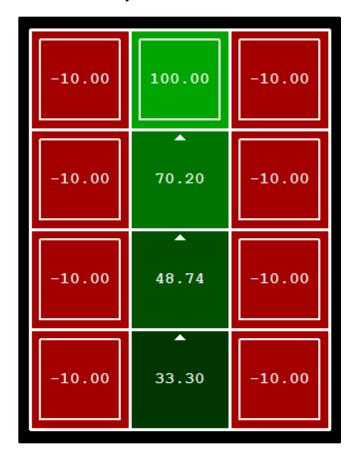


Example: Policy Evaluation

Always Go Right



Always Go Forward



Policy Evaluation

- How do we calculate the V's for a fixed policy π ?
- Idea 1: Turn recursive Bellman equations into updates (like value iteration)

$$V_0^{\pi}(s) = 0$$

$$V_{k+1}^{\pi}(s) \leftarrow \sum_{s'} T(s, \pi(s), s') [R(s, \pi(s), s') + \gamma V_k^{\pi}(s')]$$



- Efficiency: O(S²) per iteration
- Idea 2: Without the maxes, the Bellman equations are just a linear system
 - Solve with Matlab (or your favorite linear system solver)

Policy Iteration

- Alternative approach for optimal values:
 - Step 1: Policy evaluation: calculate utilities for some fixed policy (not optimal utilities!) until convergence

$$V_{k+1}^{\pi_i}(s) \leftarrow \sum_{s'} T(s, \pi_i(s), s') \left[R(s, \pi_i(s), s') + \gamma V_k^{\pi_i}(s') \right]$$

 Step 2: Policy improvement: update policy using one-step look-ahead with resulting converged (but not optimal!) utilities as future values

$$\pi_{i+1}(s) = \arg\max_{a} \sum_{s'} T(s, a, s') \left[R(s, a, s') + \gamma V^{\pi_i}(s') \right]$$

- Repeat steps until policy converges
- This is policy iteration
 - It's still optimal! Can converge (much) faster under some conditions

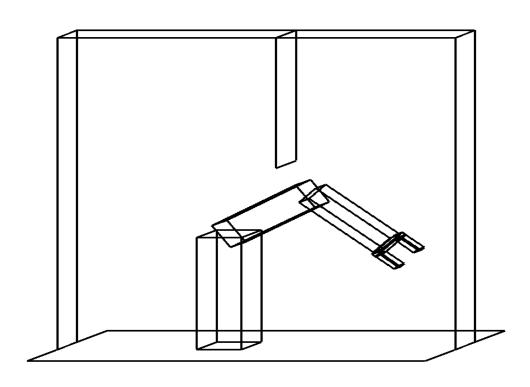
Comparison

- Both value iteration and policy iteration compute the same thing (all optimal values)
- In value iteration:
 - Every iteration updates both the values and (implicitly) the policy
 - We don't track the policy, but taking the max over actions implicitly recomputes it
- In policy iteration:
 - We do several passes that update utilities with fixed policy (each pass is fast because we consider only one action, not all of them)
 - After the policy is evaluated, a new policy is chosen (slow like a value iteration pass)
 - The new policy will be better (or we're done)
- Both are dynamic programs for solving MDPs

Summary: MDP Algorithms

- So you want to....
 - Compute optimal values: use value iteration or policy iteration
 - Compute values for a particular policy: use policy evaluation
 - Turn your values into a policy: use policy extraction (one-step lookahead)
- These all look the same!
 - They basically are they are all variations of Bellman updates
 - They all use one-step lookahead expectimax fragments
 - They differ only in whether we plug in a fixed policy or max over actions

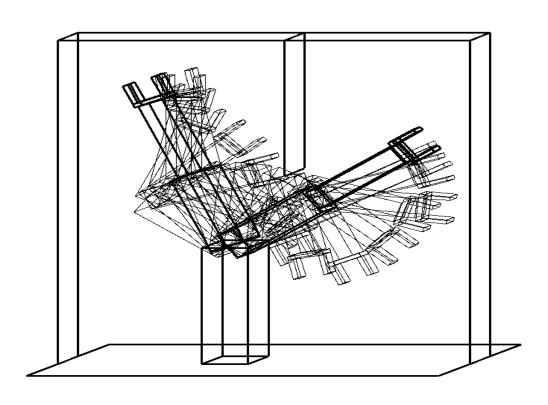
Manipulator Control



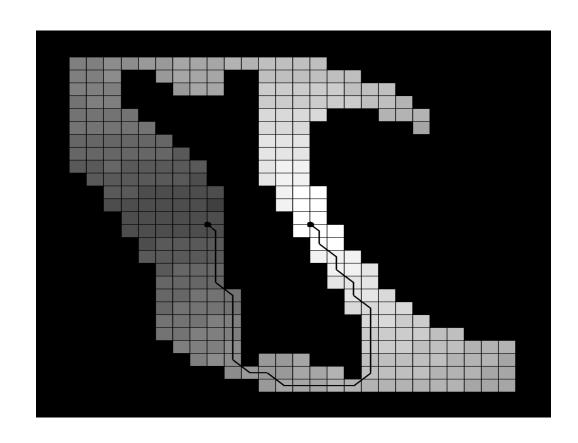
Arm with two joints (workspace)

Configuration space

Manipulator Control Path

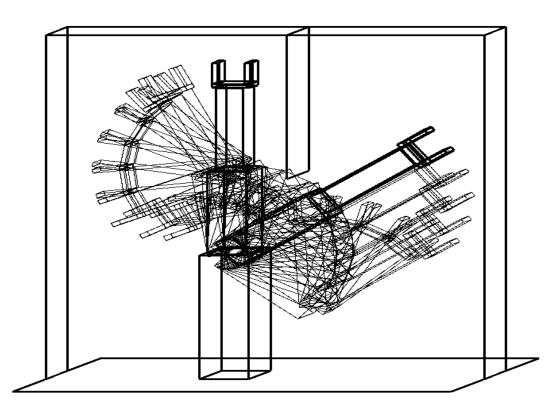


Arm with two joints (workspace)

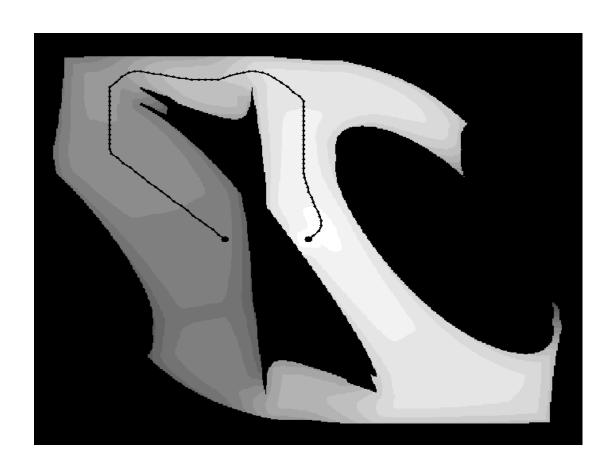


Configuration space

Manipulator Control Path



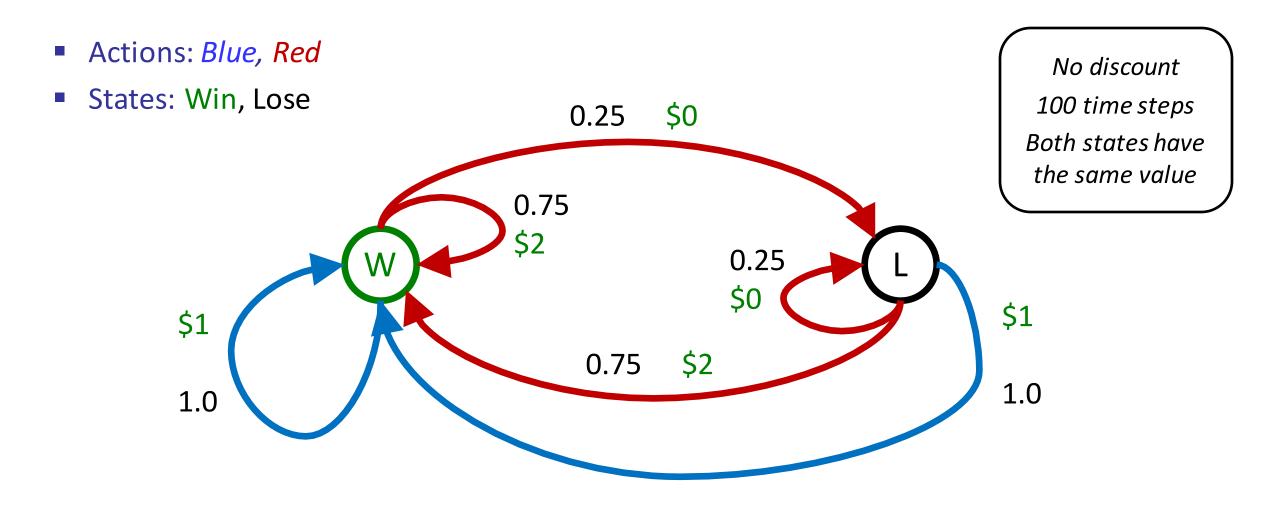
Arm with two joints (workspace)



Configuration space

Double Bandits

Double-Bandit MDP

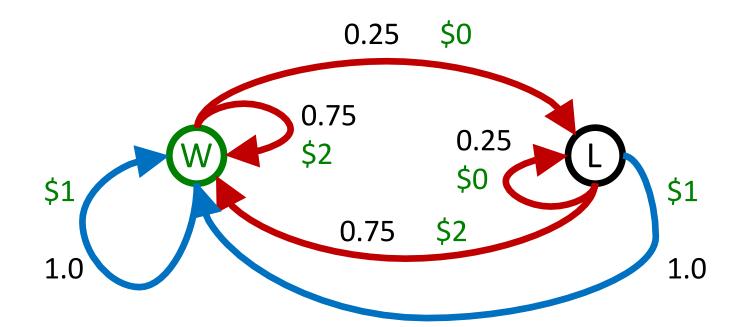


Offline Planning

- Solving MDPs is offline planning
 - You determine all quantities through computation
 - You need to know the details of the MDP
 - You do not actually play the game!

No discount
100 time steps
Both states have
the same value





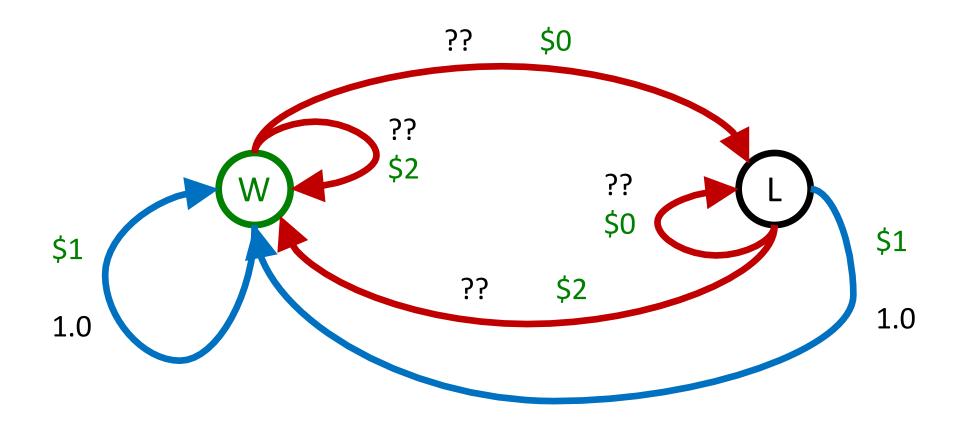
Let's Play!

\$2 \$2 \$0 \$2 \$2

\$2 \$2 \$0 \$0 \$0

Online Planning

Rules changed! Red's win chance is different.



Let's Play!

\$0 \$0 \$0 \$2 \$0

\$2 \$0 \$0 \$0 \$0

What Just Happened?

- That wasn't planning, it was learning!
 - Specifically, reinforcement learning
 - There was an MDP, but you couldn't solve it with just computation
 - You needed to actually act to figure it out

- Important ideas in reinforcement learning that came up
 - Exploration: you have to try unknown actions to get information
 - Exploitation: eventually, you have to use what you know
 - Regret: even if you learn intelligently, you make mistakes
 - Sampling: because of chance, you have to try things repeatedly
 - Difficulty: learning can be much harder than solving a known MDP

Next Time: Reinforcement Learning!