
10/13/17

1

CSE 473: Artificial Intelligence
Fall 2017

Adversarial Search
Minimax, pruning, Expectimax

Dieter Fox

Based on slides adapted Luke Zettlemoyer, Dan Klein, Pieter 
Abbeel, Dan Weld, Stuart Russell or Andrew Moore 

1

Game Playing State-of-the-Art 2017
§ Checkers: Chinook ended 40-year-reign of human world champion 

Marion Tinsley in 1994. Used an endgame database defining perfect play 
for all positions involving 8 or fewer pieces on the board, a total of 
443,748,401,247 positions.  Checkers is now solved!

§ Chess: Deep Blue defeated human world champion Gary Kasparov in a 
six-game match in 1997. Deep Blue examined 200 million positions per 
second, used very sophisticated evaluation and undisclosed methods for 
extending some lines of search up to 40 ply.  Current programs are even 
better, if less historic.

§ Othello: Human champions refuse to compete against computers, which 
are too good.

§ Go: In March 2016, AlphaGo beats 9-dan master Lee Sedol (3 wins, 1 
loss, 1 win). Combines Monte-Carlo tree search with deep reinforcement 
learning.

§ Poker: In December 2016, computer beats professional players at no-limit 
Texas hold 'em

Adversarial Search Game Playing

§ Many different kinds of games!

§ Choices:
§ Deterministic or stochastic?
§ One, two, or more players?
§ Perfect information (can you see the state)?

§ Want algorithms for calculating a strategy (policy)
which recommends a move in each state

Deterministic Games

§ Many possible formalizations, one is:
§ States: S (start at s0)
§ Players: P={1...N} (usually take turns)
§ Actions: A (may depend on player / state)
§ Transition Function: S x A → S
§ Terminal Test: S → {t,f}
§ Terminal Utilities: S x P → R

§ Solution for a player is a policy: S → A

Zero-Sum Games

§ Zero-Sum Games
§ Agents have opposite utilities 

(values on outcomes)
§ Lets us think of a single value 

that one maximizes and the 
other minimizes

§ Adversarial, pure competition

§ General Games
§ Agents have independent utilities 

(values on outcomes)
§ Cooperation, indifference, 

competition, & more are possible



10/13/17

2

Single-Agent Trees

8

2 0 2 6 4 6… …

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu

Value of a State
Non-Terminal	States:

8

2 0 2 6 4 6… … Terminal	States:

Value	of	a	state:	
The	best	
achievable	

outcome	(utility)	
from	that	state

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu

Adversarial Game Trees

-20 -8 -18 -5 -10 +4… … -20 +8

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu

Minimax Values

+8-10-5-8

States	Under	Agent’s	Control:

Terminal	States:

States	Under	Opponent’s	Control:

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu

Tic-tac-toe Game Tree Adversarial Search (Minimax)
§ Deterministic, zero-sum games:

§ Tic-tac-toe, chess, checkers
§ One player maximizes result
§ The other minimizes result

§ Minimax search:
§ A state-space search tree
§ Players alternate turns
§ Compute each node’s minimax

value: the best achievable 
utility against a rational 
(optimal) adversary

8 2 5 6

max

min2 5

5

Terminal	values:
part	of	the	game	

Minimax	values:
computed	recursively

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu



10/13/17

3

Minimax Implementation

def	min-value(state):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,	max-
value(successor))

return	v

def	max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	min-
value(successor))

return	v

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu

Minimax Implementation (Dispatch)
def value(state):

if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is MIN: return min-value(state)

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu

def	min-value(state):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,	max-
value(successor))

return	v

def	max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	min-
value(successor))

return	v

Concrete Minimax Example

min

max

Minimax Properties

§ Time complexity

§ Space complexity?

10 10 9 100

max

min
§ O(bm)

§ O(bm)

§ For chess, b ≈ 35, m ≈ 100
§ Exact solution is completely infeasible
§ But, do we need to explore the whole tree?

§ Optimal? 
§ Yes, against perfect player. Otherwise?

Pruning Example

3 ?

Progress of search…

[-∞,2]

α-β Pruning
§ General configuration

§ α is the best value that 
MAX can get at any choice 
point along the current path

§ If n becomes worse than α, 
MAX will avoid it, so can 
stop considering n’s other 
children

§ Define β similarly for MIN

Player

Opponent

Player

Opponent

α

n



10/13/17

4

Alpha-Beta Pruning Properties
§ This pruning has no effect on final result at the root

§ Values of intermediate nodes might be wrong!
§ but, they are bounds

§ Good child ordering improves effectiveness of pruning

§ With “perfect ordering”:
§ Time complexity drops to O(bm/2)
§ Doubles solvable depth!
§ Full search of, e.g. chess, is still hopeless…

Alpha-Beta Implementation

def	min-value(state	,	α,	β):
initialize	v	=	+∞
for	each	successor	of	state:

v	=	min(v,	
value(successor,	α,	β))

if	v	≤	α return	v
β	=	min(β,	v)

return	v

def	max-value(state,	α,	β):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,
value(successor,	α,	β))

if	v	≥	β return	v
α =	max(α,	v)

return	v

α: MAX’s best option on path to root
β: MIN’s best option on path to root

Slide from Dan Klein &  Pieter Abbeel - ai.berkeley.edu

Resource Limits
§ Cannot search to leaves
§ Depth-limited search

§ Instead, search a limited depth of tree
§ Replace terminal utilities with an eval 

function for non-terminal positions
§ Guarantee of optimal play is gone
§ Example:

§ Suppose we have 100 seconds, can 
explore 10K nodes / sec

§ So can check 1M nodes per move
§ α-β reaches about depth 8 – decent 

chess program
? ? ? ?

-1 -2 4 9

4
min min

max
-2 4

Evaluation Functions
§ Function which scores non-terminals

§ Ideal function: returns the utility of the position
§ In practice: typically weighted linear sum of features:

§ e.g. f1(s) = (num white queens – num black queens), etc.

Which algorithm?

α-β, depth 4, simple eval fun

Which algorithm?
α-β, depth 4, better eval fun



10/13/17

5

Worst-Case vs. Average Case

10 10 9 100

ma
x

mi
n

Worst-Case vs. Average Case

10 10 9 100

max

chance

Idea:	Uncertain	outcomes	controlled	by	chance,	not	an	adversary!

Expectimax Search

§ Why wouldn’t we know what the result of an action will 
be?
§ Explicit randomness: rolling dice
§ Unpredictable opponents: the ghosts respond randomly
§ Actions can fail: when moving a robot, wheels might slip

§ Values should now reflect average-case (expectimax) 
outcomes, not worst-case (minimax) outcomes

§ Expectimax search: compute the average score under 
optimal play
§ Max nodes as in minimax search
§ Chance nodes are like min nodes but the outcome is 

uncertain
§ Calculate their expected utilities
§ I.e. take weighted average (expectation) of children

§ Later, we’ll learn how to formalize the underlying 
uncertain-result problems as Markov Decision 
Processes

10 4 5 7

max

chance

10 10 9 100

Minimax vs Expectimax

Expectimax Minimax

3 ply look ahead, ghosts move randomly

Expectimax Pseudocode

def value(state):
if the state is a terminal state: return the state’s utility
if the next agent is MAX: return max-value(state)
if the next agent is EXP: return exp-value(state)

def	exp-value(state):
initialize	v	=	0
for	each	successor	of	state:

p	=	probability(successor)
v	+=	p	*	value(successor)

return	v

def	max-value(state):
initialize	v	=	-∞
for	each	successor	of	state:

v	=	max(v,	value(successor))
return	v

Expectimax Pseudocode

def	exp-value(state):
initialize	v	=	0
for	each	successor	of	state:

p	=	probability(successor)
v	+=	p	*	value(successor)

return	v

5 78 24 -12

1/2
1/3

1/6

v	=	(1/2)	(8)	+	(1/3)	(24)	+	(1/6)	(-12)			=		

10

10



10/13/17

6

Expectimax Example

12 9 6 03 2 154 6

Expectimax Pruning?

24 -128 2

10

Depth-Limited Expectimax

…

…

492 362 …

400 300

Estimate	of	
true	

expectimax
value	(which	

would	
require	a	lot	
of	work	to	
compute)


