
Introduction to Artificial Intelligence Dieter Fox
CSE 473, Autumn 2017

Final Exam
December 12, 2017

Directions

This exam has 7 problems with 111 points shown in the table below, and you have 110
minutes to complete it.

• The exam is closed book. No calculators.

• If you have trouble with a question, by all means move on to the next problem—or the
next part of the same problem.

• In answers incurring numbers, feel free to not resolve fractions and sums.

• If a question is unclear, feel free to ask me for clarification!

• Please do not turn the page until I indicate that it is time to begin.

Answer Key
Name:

Number:

1) True/False /24
4) Probabilities /10
3) Hidden Markov Models /20
2) Reinforcement Learning /25
5) Bayes Nets and Variable Elimination /20
6) Bayes Nets and CSPs /8
7) Bayes Nets Sampling /4
Total /111
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1. (24 points: 2 pts each, -2 pts if wrong) True or False - Circle the correct answer (feel
to not circle if you’re not certain).

(a) Assume we are running A* graph search with a consistent heuristic h. Assume
the optimal cost path to reach a goal has a cost c∗. Then we have that all nodes n
reachable from the start state satisfying f(n) = g(n)+h(n) < c∗ will be expanded
during the search. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F

True

(b) In A* search, if f1(n) and f2(n) are both admissible heuristics, thenmin(f1(n), f2(n))
is also an admissible heuristic. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F

True

(c) If the only difference between two MDPs is the value of the discount factor then
they must have the same optimal policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F

False

(d) Approximate Q-Learning with feature vectors will always converge to the optimal
policy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F

False

(e) For an infinite horizon MDP with a finite number of states and actions and with
a discount factor γ, where 0 < γ < 1, value iteration is guaranteed to converge. T F

True

(f) In an MDP, a discount factor γ < 1 can always be expressed as a negative living
reward. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F

False

(g) In an MDP, a negative living reward can always be expressed using a discount
factor γ < 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F

False

(h) A and B are random variables. Given no independence assumptions, it is guar-
anteed that

∑
a

∑
b P (A = a|B = b) = 1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F

False

(i) The transition probabilities in a Markov Model can change over time. . . . . . . . . . . T F

False

(j) In a Hidden Markov Model, the current observation is independent of all else
given the current state. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F

True
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(k) By using the most-constrained variable heuristic and the least-constraining value
heuristic we can solve every CSP in time linear in the number of variables. . . . . T F

False

(l) When enforcing arc consistency in a CSP, the set of values which remain when the
algorithm terminates does not depend on the order in which arcs are processed
from the queue. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . T F

True
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2. (10 points) Probabilities

(a) (4 points) For each expression, state whether or not it is equal to P(A,B,C)
given no independence assumptions.

i. P (C | A,B) · P (A,B) True

ii. P (C | A,B) · P (A) · P (B) False

iii. P (A | B) · P (B | C) · P (C) False

iv. P (A | B,C) · P (B | C) · P (C) True

(b) (4 points) Suppose A and B are independent boolean variables. Determine the
missing entries x and y in the joint distribution of P (A,B) shown below. You
do not have to simplify numerical results.

P (A = T,B = T ) = 0.15

P (A = T,B = F ) = 0.45

P (A = F,B = T ) = x

P (A = F,B = F ) = y

x = 0.1 y = 0.3
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One possible way to solve:

P (A = T ) = 0.6

P (B = T ) = 0.15 + x

P (A = T )P (B = T ) = P (A = T,B = T ) (due to independence)

0.6(0.15 + x) = 0.15

x =
0.15

0.6
− 0.15

y = 0.4− x (since it all sums to 1)

y = 0.4− (
0.15

0.6
− 0.15)

(c) (2 points) Suppose we have a robot on a grid world with a noisy sensor and we
know the distribution for P (Observation|Location) of sensor readings given the
robot’s grid square. We also have knowledge about the locations in the form of a
prior, P (Location). However, we are really interested in the probability of being
in a grid square given the sensor reading, P (Location|Observation). How could
you compute this probability? Short answer.

Using Bayes’ theorem, we know that P (Location|Observation) = P (Observation|Location)∗
P (Location)/P (Observation).
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3. (20 points) Hidden Markov Models

Suppose there is a decision problem called the Exam Problem, which is deciding if you
will pass an exam given a set of studying intervals. Professor Kenny is attempting to
classify the problem as either NP-Complete or just NP-Hard. We will model Kenny’s
classifications over time as a Hidden Markov Model.

Let c be the state in which Kenny classifies the Exam Problem as NP-Complete, and
h be the state in which Kenny classifies the Exam Problem as NP-Hard.

Rather than using legitimate techniques, Kenny classifies the problem based on how
he classified it the day before (the previous time step). Between each day, there is a
70% chance that Kenny changes his classification of the Exam Problem, otherwise his
classification stays the same as the previous day.

(a) (2 points) Fill in the table with the transition probabilities as defined above, where
the row corresponds to Xt+1 and the column to Xt.

c h
c P (Xt+1 = c|Xt = c) = 0.3 P (Xt+1 = c|Xt = h) = 0.7

h P (Xt+1 = h|Xt = c) = 0.7 P (Xt+1 = h|Xt = h) = 0.3

(b) (2 points) Now suppose there is evidence in the form of Kenny listening to music.
If Kenny classifies the Exam Problem as NP-Complete then there is a 60% chance
he is listening to music. If Kenny classifies the Exam Problem as NP-Hard then
there is an 80% chance he is listening to music. Denote listening to music as m
and not listening to music as ¬m.

Fill in the table with the conditional probabilities of the evidence based on the
description above.

c h
m P (m|c) = 0.6 P (m|h) = 0.8

¬m P (¬m|c) = 0.4 P (¬m|h) = 0.2
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(c) (2 points) There’s a 50% chance Kenny’s initial classification is NP-Complete,
P (X0 = c) = 0.5. Compute the values for the passage of time for c and h, at
t = 1.

passage of time for c: 0.3 · 0.5 + 0.7 · 0.5 = 0.5

passage of time for h: 0.7 · 0.5 + 0.3 · 0.5 = 0.5

(d) (4 points) Now factor in the evidence that Kenny is listening to music at t = 1.
Compute the beliefs B(X1 = c) and B(X1 = h). You do not have to evalu-
ate/simplify terms when computing the beliefs.

evidence for c: 0.6 · 0.5 = 0.3

evidence for h: 0.8 · 0.5 = 0.4

B(X1 = c) = 0.3
0.3+0.4

= 0.429

B(X1 = h) = 0.4
0.3+0.4

= 0.571

(e) (2 points) What is the probability of producing the exact sequence C, H, H, C, H
(from t = 0 to t = 4)? Ignore evidence. You do not need to evaluate or simplify
your expression. Recall that there’s a 50% chance Kenny’s initial classification is
NP-Complete, P (X0 = c) = 0.5.

0.5 · 0.7 · 0.3 · 0.7 · 0.7
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(f) (2 points) How would you change the transition probabilities so that Kenny never
changes his classification in between days? Provide the corresponding values.

P (Xt+1 = c|Xt = c) = 1.0

P (Xt+1 = h|Xt = c) = 0

P (Xt+1 = c|Xt = h) = 0

P (Xt+1 = h|Xt = h) = 1.0

(g) (2 points) What is the difference between a Markov Model and a Hidden Markov
Model? Provide a short answer.

Observe output/effects/evidence/emissions/observations at each time step for Hid-
den Markov Models but not for Markov Models (other answers acceptable if ac-
curate).

(h) (2 points) Consider a sequence of evidence e1, . . . , en in a Hidden Markov Model.
We want to perform inference on Xt. What is the difference between filtering
and smoothing in the context of computing a distribution over, or performing
inference on, Xt with the given evidence? Provide a short answer.

Filtering is inference based on previous evidence,P (Xt|e1:t), and smoothing is
inference based on all evidence, P (Xt|e1:n).

(i) (2 points) How would you find the most probable explanation in a Hidden Markov
Model? Provide a short answer.

Use Viterbi’s algorithm to compute the values, extract path from values.
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4. (25 points) MDP and Reinforcement Learning

You are living in the year 2050 and are given the task to find water on Mars. You
remember the material from CSE473 and design a robot that uses the MDP shown
below to represent the state space on Mars. Martians live in M1 and M2 and water
can be found in state W. The states S, A, and B are useless and provide 0 reward.
Once your robot reaches one of the M and W states its only option is to send a boolean
value back to Earth representing whether or not it found water, and it’s not getting
any additional reward for doing that.

The robot should stay away from the Martians, so the robot receives a reward of -8
when entering an M state, and a reward of 16 when entering the W state (as indicated
in the figure). The only actions it can take is to either go East (E) or go North (N)
(it can only go North from state B). You are the best at designing robots and hence,
there is no noise when transitioning to different states and actions always succeed.

(a) (3 points) What are the optimal values, V ∗ of each state if γ = 0.5?

V ∗(S) = 4 or V1(S) = 0
V ∗(A) = 8 or V1(A) = 0
V ∗(B) = 16 or V1(B) = 16

(b) (2 points) What are the Q-values for the state S if γ = 0.5?

Q∗(S,N) = −8, Q1(S,N) = −8
Q∗(S,E) = 4, Q1(S,E) = 0

(c) (3 points) What is the optimal policy, π∗, for this MDP?

π∗(S) = E
π∗(A) = E
π∗(B) = N
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After achieving great success you are supposed to present your exploration to
your boss. However, while walking to the presentation room a Martian attacks
the robot and puts it in a different location on Mars. You know this new location
has a similar state space as the one before, though the rewards at “Done” states P,
Q, and R are different and unknown. Your agent now has a stochastic transition
function due to the damage. You remember that you had some code for online
learning of values as backup. Help yourself learn these values before the final
presentation.

(d) (6 points) Consider the following episodes performed in this state space. The
experience tuples are of the form [s, a, s’, r], where the robot starts in state s,
performs action a, ends up in state s’, and receives immediate reward r, which
is determined by the state entered. Let γ = 1.0 for this MDP. Fill in the values
computed by the Q-learning algorithm with a learning rate of = 0.5. All Q values
are initially 0, and you should fill out each row using values you have computed
in previous rows.

Records Q-Values
1 [S, E, T, 4] Q(S, E) = 2
2 [T, E, U, 4] Q(T, E) = 2
3 [U, N, R, 16] Q(U, N) = 8
4 [S, E, P, -4] Q(S, E) = -1
5 [T, E, Q, -4] Q(T, E) = -1
6 [S, E, T, 4] Q(S, E) = 3/2

(e) (3 points) You also want to know the transition probabilities for a few state -
action pairs. Use the information from the records above to calculate T (s, a, s’)
for the given state-action pairs where we start in state s, perform action a and
end up in state s’.

T (S, E, T) = 2/3
T (T, E, U) = 1/2
T (U, N, R) = 1
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In order to impress your boss even more, you also perform approximate q-learning
using features, as shown on the MDP below. You find out that 2 features would
allow you to represent this MDP accurately enough. However, you are stumped
by the calculations needed to compute all the values.

(f) (7 points) Help your future self get started by computing the weights w1 and
w2 using approximate Q-Learning using the following 2 records. Calculate the
weights after each record. Initially w1 = 1 and w2 = 0. Use a learning rate of
α=0.5 and a discount factor of γ=1.0. Please show your work.

i. [S, E, T], reward: 8

w1 = 1 + 0.5 ∗ [8 + 1 ∗ (−2 ∗ 1 + 2 ∗ 0)− (4 ∗ 1 + 1 ∗ 0)] ∗ 4 = 5
w2 = 0 + 0.5 ∗ [8 + 1 ∗ (−2 ∗ 1 + 2 ∗ 0)− (4 ∗ 1 + 1 ∗ 0)] ∗ 1 = 1

ii. [T, E, U], reward: 12

w1 = 5 + 0.5 ∗ [12 + 1 ∗ (2 ∗ 5 + 2 ∗ 1)− (−2 ∗ 5 + 2 ∗ 1)] ∗ −2 = -27
w2 = 1 + 0.5 ∗ [12 + 1 ∗ (2 ∗ 5 + 2 ∗ 1)− (−2 ∗ 5 + 2 ∗ 1)] ∗ 2 = 33

(g) (1 points) Give one possible issue when using approximate Q-Learning to compute
Q-values for a MDP (1 sentence).

possible problem when states may share features but might be really different in
values.
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5. (20 points) Bayesian Networks and Variable Elimination

Consider the Bayesian Network of UW Courses which students might take at a given
quarter. Each variable can be either “Registered” (True) or “Not Registered” (False).

(a) (8 points) Bayesian Network Independence

Determine if the following conditional independence statements are enforced by
the structure of the Bayes’ Net. (2 points each, -1 point if wrong)

i. Is 332 conditionally independent of 312 given 490S? . . . . . . . . . . . . . . . . . . . . . . . T F

ii. Is 312 conditionally independent of 333 given 490R and 332? . . . . . . . . . . . . . . T F

iii. Is 333 conditionally independent of 473 given 490R and 332? . . . . . . . . . . . . . . T F

iv. Is 332 conditionally independent of STAT390 given 312? . . . . . . . . . . . . . . . . . . T F

A. False

B. True

C. True

D. True
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(b) (2 points) Bayesian Network Inference

Consider the following subset of the above network.

Complete the Conditional Probability Tables below with the names of the dis-
tributions that fully describe the given Bayesian Network. Write one value in
each box marked with a ⇒.

⇒ CSE311 ⇒ P(CSE311)

True 0.5
False 0.5

CSE311 CSE332 ⇒ P (CSE332|CSE311)

True True 0.5
True False 0.5

False True 0.0
False False 1.0

CSE332 CSE473 ⇒ P (CSE473|CSE332)

True True 0.5
True False 0.5

False True 0.0
False False 1.0

CSE332 CSE490R ⇒ P (CSE490R|CSE332)

True True 0.5
True False 0.5

False True 0.0
False False 1.0
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(c) (10 points) Variable Elimination

Using Variable Elimination, list the steps to calculate P (CSE332|¬cse473). Clearly
mark any new factors and how they are introduced. Eliminate variables in any
choice of order. Please use the following notation to sum over the values of a
variable:

For example, X :
∑

x P (X = x).

Define new factors as f2(X, y) =
∑

z f1(X, y, Z = z)P (X|Z = z).

Variable Elimination Strategy:

i. List factors: P (CSE311), P (CSE332|CSE311), P (CSE473|CSE332), P (CSE490R|CSE332)

ii. Remove irrelevant factors: P (CSE490R|CSE332)

iii. Observe ¬cse473

iv. Eliminate P (CSE311): f1(CSE332), P (¬cse473|CSE332)

f1(CSE332) =
∑

cse311 P (cse311) ∗ P (CSE332|cse311)

v. Join f1(CSE332) and P (¬cse473|CSE332)

f2(CSE332,¬cse473) = f1(CSE332) ∗ P (¬cse473|CSE332)

vi. Normalize for CSE332

P (CSE332|¬cse473) =
f2(CSE332,¬cse473)

f2(CSE332, cse473) + f2(CSE332,¬cse473)
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6. (8 points) Bayes Nets and CSPs

Let us consider how to solve CSPs by converting them to Bayesian networks.

We can solve for values of variables that satisfy CSPs by running inference for the
query on the constraints, where the setting(s) of the variables with nonzero probability
are those that satisfy the constraints.

College Level Mathematics

Let us analyze a CSP of only two integer variables A and B each with domain {+1,−1}.
The two variables are subject to the constraint that A+B 6= 0. This is shown
below with the edge between the two nodes representing the constraint.

(a) (4 points) Enforce the above constraint by representing the variables in a Bayesian
Network. This formation must represent each variable as a node with a directed
edge showing influence between the two variables. Draw the Bayes’ net and
define all necessary conditional probability tables with values such that
consistent settings of the variables correspond to nonzero probabilities.

P(A) has been provided to get you started.

A P (A)
+1 1/2
−1 1/2

Solution Bayesian Network:

A B P (B|A)
+1 +1 1.0
−1 +1 0.0
+1 −1 0.0
−1 −1 1.0
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(b) (4 points) The same CSP is printed for reference with variables A,B ∈ {+1,−1}
and the constraint that A+B 6= 0:

Once again, we will convert this CSP into a Bayes’ net. However, this time we
want to represent the constraint by adding a third Boolean variable C whose
conditional distribution enforces the constraint. Draw the Bayes’ Net with
the nodes A, B, C to show the influence between the three nodes, and provide
all conditional probability tables with values such that consistent settings of
the variables correspond to nonzero probabilities.

As before, P(A) is provided.

A P (A)
+1 1/2
−1 1/2

Solution Bayesian Network:

B P (B)
+1 1/2
−1 1/2

A B C P (C|A,B)
+1 +1 T 1.0
+1 +1 F 0.0
+1 −1 T 0.0
+1 −1 F 1.0
−1 +1 T 0.0
−1 +1 F 1.0
−1 −1 T 1.0
−1 −1 F 0.0
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7. (4 Points) Bayesian Network Sampling Consider the HMM shown below. We want
to use Gibbs sampling to generate samples from the distribution over the hidden states
Xi conditioned on all T evidence values.

In Gibbs Sampling, we pick one of the variables, say Xt, and sample a new value for
it, conditioned on all the other sampled values. How can you efficiently compute this
distribution using the sampled values and the conditional distributions specifying the
HMM? Provide the equation and any additional operations necessary.

Solution: p(Xt|xt−1)p(et|Xt)p(xt+1|Xt) followed by normalization over Xt
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Equation sheet:

V ∗(s) = max
a
Q∗(s, a) (Bellman equations)

Q∗(s, a) =
∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

V ∗(s) = max
a

∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)]

π∗(s) = argmax
a

∑
s′

T (s, a, s′)[R(s, a, s′) + γV ∗(s′)] (Optimal policy)

Q(s, a) = (1− α)Q(s, a) + α(r + γmax
a′

Q(s′, a′)) (Q-Learning)

Q(s, a) = w1f1(s, a) + w2f2(s, a) + ...+ wnfn(s, a) (Approximate Q-Learning)

diff = [r + γmax
a′

Q(s′, a′)]−Q(s, a)

wi = wi + α[diff]fi(s, a)
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Additional space
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Additional space
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