
Introduction to Artificial Intelligence Dieter Fox
CSE 473, Autumn 2017

Homework 5
Due on Friday, Dec 8, 2017

(No late submissions will be accepted)

1. (8 points) Probabilities

Consider the conditional probability distributions below.

A B P(A|B)
true true 0.5
false true 0.5
true false 0.1
false false 0.9

B C P(B|C)
true true 0.05
false true 0.95
true false 0.6
false false 0.4

C P(C)
true 0.1
false 0.9

(a) (2 points) Compute the joint distribution P (B,C). Write all values needed to
describe this distribution.

B C P(B,C)
true true 0.005
false true 0.095
true false 0.54
false false 0.36

(b) (2 points) Compute P (B) by summing out the necessary variables. Write all
values needed to describe this distribution.

B P(B)
true 0.005 + 0.54 = 0.545
false 0.095 + 0.36 = 0.455
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(c) (2 points) Use the chain rule to factor the joint probability distribution P (A,B,C).
What specific conditional independence assumption(s) must be made between the
three variables for the joint distribution to be fully described by the conditional
distributions P (A|B), P (B|C), and P (C)?

By the chain rule, P (A,B,C) = P (C)P (B|C)P (A|B,C) with no independence
assumptions. For P (A|B,C) = P (A|B), we have to assume that A is independent
of C given B.

(d) (1 points) Assuming the independence assumptions in (c), what is P (A = false∧
B = true ∧ C = false)? Use the probabilities provided above.

0.5 ∗ 0.6 ∗ 0.9

(e) (1 points) Draw a Bayesian Network that encodes the independence assumptions
that allows the joint distribution P(A,B,C) to be fully described by the three
conditional distributions above.
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2. (8 points) Bayes Net: Independence

In 1999, Professor Agnieszka Onisko published a research paper modeling liver disorder
diagnosis via a Bayesian Network model which featured an “astounding” 94 variables,
shown below.

Let us interpret some independence properties of a small subset of the featured model,
using only the “Headache”, “Nausea”, “Vomiting”, “Anorexia”, “Fat Intolerance”,
“Gallstones”, “Diarrhea”, “Weight Loss” and “Liver Disorder” features, shown below.

The following (Y/N) questions are worth 1 point each with a negative point for in-
correct answers (don’t guess randomly). By independent we mean whether they are
independent for any setting of the CPTs.

(a) Is Headache independent of Anorexia? Y

(b) Is Gallstones conditionally independent of Nausea given Anorexia? Y

(c) Is Gallstones conditionally independent of Fat Intolerance given Liver Disorder?
N

(d) Is Gallstones conditionally independent of Diarrhea given Fat Intolerance? N

(e) Is Gallstones conditionally independent of Weight Loss given Fat Intolerance? N

(f) Is Weight Loss conditionally independent of Fat Intolerance given Diarrhea? Y

(g) Is Headache conditionally independent of Anorexia given Weight Loss and Vom-
iting? Y
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(h) Is Headache conditionally independent of Diarrhea given Anorexia and Vomiting?
Y

3. (8 points) Bayes Net: Inference

Background Context: In her paper, Professor Onisko modeled 16 different diseases
related to liver disorder. Claiming a 67% “Top-4” classification accuracy (meaning
that a patient’s correct liver disorder given symptoms was among the four highest
probability guesses generated by the network), while achieving 34% “Top-1” accuracy.

Let us consider the conditional independence for the following Bayesian Network model.

(a) (1 points) What are the conditional probability distribution tables needed to
completely represent the above Bayesian Network? No need to provide values.

• Let Symp be shorthand for ReportedSymptomsAreFalsePositive

• Let Sick be shorthand for PatientIsActuallySick

• Let Data be shorthand for DataAvailable

• Let Num be shorthand for NumberOfAllowedGuesses

• Let Correct be shorthand for CorrectDiagnosis

P (Symp), P (Num), P (Data|Symp), P (Sick|Symp), P (Correct|Data, Sick,Num)
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(b) (7 points) Using Variable Elimination, show each step of the general method to
compute P (Correct|Symp = True,Num = 1). You can assume that all variables
are discrete. Please use the following notation if you want to sum over the values
of a variable, for example, X :

∑
x P (X = x). Define any new factors such as

f2(X, y) =
∑

z f1(X, y, Z = z)P (X|Z = z). Eliminate variables in alphabetical
order.

(a) Apply evidence observation

P (Symp = True), P (Num = 1), P (Data|Symp = True), P (Sick|Symp =
True), P (Correct|Data, Sick,Num = 1)

(b) Eliminate Variables in alphabetical order: Data

i. Join relevant distribution tables, with “intermediate factor” f ′1

f ′1(Symp = True,Num = 1, Data, Correct, Sick) (1)

= P (Data|Symp = True)P (Correct|Data,Num = 1, Sick) (2)

= P (Data, Correct|Symp = True,Num = 1, Sick) (3)

ii. Sum out, and eliminate Data in place with a new factor f1

f1(Symp = True,Num = 1, Correct, Sick) (4)

=
∑

d∈Data

P (Data = d|Symp = True)P (Correct|Data = dNum = 1, Sick)

(5)

=
∑

d∈Data

f ′1(Symp = True,Num = 1, Data = d, Correct, Sick) (6)

= P (Correct|Symp = True,Num = 1, Sick) (7)

(c) Eliminate Variables in alphabetical order: Sick

i. Join relevant distribution tables, with “intermediate factor” f ′2

f ′2(Symp = True,Num = 1, Correct, Sick) (8)

= f1(Symp = True,Num = 1, Correct, Sick)P (Sick|Symp = True) (9)

(10)

ii. Sum out, and eliminate Sick in place with a new factor f2

f2(Symp = True,Num = 1, Correct) (11)

=
∑

s∈Sick

f1(Symp = True,Num = 1, Correct, Sick = s)P (Sick = s|Symp = True)

(12)

=
∑

s∈Sick

f ′2(Symp = True,Num = 1, Correct, Sick = s) (13)

= P (Correct|Symp = True,Num = 1) (14)
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(d) Join remaining factors and Normalize over the Query Variable Correct

i. Only factor: P (Correct|Symp = True,Num = 1)

ii. Simply normalize across values of c ∈ Correct to compute the probability
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4. (10 points) Hidden Markov Models

At time t, Kenny is in some state Xt. The two states Kenny alternates between are
saving the world (denote this as S) and being a student in CSE (denote this as C).
Let the evidence Et be whether or not Kenny is seen in the CSE labs at time t.

The transition probabilities are provided in the following table, where the row corre-
sponds to Xt−1 and the column to Xt.

S C

S 0.8 0.2
C 0.4 0.6

For example, P (Xt = S|Xt−1 = C) = 0.4.

The model for evidence Et is provided in the following table, where the row corresponds
to Xt and the column to Et.

true false

S 0.1 0.9
C 0.7 0.3

For example, P (Et = false|Xt = S) = 0.9.

(a) (2 point) Let the initial beliefs be P (X0 = S) = P (X0 = C) = 0.5. Fill in the
following table for t = 1, first computing for passage of time, and then for obser-
vation of evidence E1 = true. Finally, normalize the values from the observation
column to get the beliefs. Round to three decimal places.

passage of time observation B(X1)

S 0.8 · 0.5 + 0.4 · 0.5 = 0.6 0.1 · 0.6 = 0.06 0.176
C 0.2 · 0.5 + 0.6 · 0.5 = 0.4 0.7 · 0.4 = 0.28 0.824

(b) (2 point) Repeat for t = 2, with the observation of evidence E2 = false. When
using any previous value for computations, use their rounded value. Round to
three decimal places.

passage of time observation B(X2)

S 0.8 · 0.176 + 0.4 · 0.824 = 0.470 0.9 · 0.470 = 0.423 0.727
C 0.2 · 0.176 + 0.6 · 0.824 = 0.530 0.3 · 0.530 = 0.159 0.273
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(c) (2 point) Recall from lecture that mt[xt] = maxx1:t−1 P (x1:t−1, xt, e1:t), which is
the probability of the most likely path that ends at xt, considering the path up
to t and the evidence up to t.

Use Viterbi’s algorithm to compute m1[S1],m1[C1],m2[S2], and m2[C2] for the
sequence of evidence {E1 = true, E2 = false}. Define m0[S] = m0[C] = 0.5. Use
exact numbers in your calculations and answers. What was Kenny most likely
doing at time t = 1 and at time t = 2?

m1[S1] = P (E1 = true|X1 = S) max
X0

P (X1 = S|X0)m0[X0]

= 0.1 ·max(0.8 · 0.5, 0.4 · 0.5)

= 0.04

m1[C1] = P (E1 = true|X1 = C) max
X0

P (X1 = C|X0)m0[X0]

= 0.7 ·max(0.2 · 0.5, 0.6 · 0.5)

= 0.21

m2[S2] = P (E2 = false|X2 = S) max
X1

P (X2 = S|X1)m1[X1]

= 0.9 ·max(0.8 · 0.04, 0.4 · 0.21)

= 0.0756

m2[C] = P (E2 = false|X2 = C) max
X1

P (X2 = C|X1)m1[X1]

= 0.3 ·max(0.2 · 0.04, 0.6 · 0.21)

= 0.0378

At t = 1, Kenny was a CSE student. At t = 2, Kenny was saving the world.
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(d) (1 point) Assume now we are using a particle filter with 3 particles to approximate
our belief instead of using exact inference. Imagine we have just applied transition
model sampling (elapse-time) from state X0 to X1, and now have the set of
particles {S, S, C}. What is our belief about X1 before considering noisy evidence?

X1 B(X1) (elapse time)
S 2/3
C 1/3

(e) (2 points) Now assume we receive sensor evidence E1 = true. What is the weight
for each particle, and what is our belief now about X1 (before weighted resam-
pling)?

Particle Weight
S 0.1
S 0.1
C 0.7

X1 B(X1) (after observation)
S 0.222
C 0.778

(f) (1 point) Will performing weighted resampling on these weighted particles to
obtain our final three particle representation for X1 cause our belief to change?
Briefly explain why or why not.
Yes, because there will be three unweighted particles which can’t represent this
belief
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5. (Optional, not graded) Create Bayes Net

Create a Bayes net with exactly four states {A,B,C,D}, that follows all of the inde-
pendence constraints below.

(a) A ⊥⊥ B

(b) A 6⊥⊥ D|B
(c) A ⊥⊥ D|C
(d) A 6⊥⊥ C

(e) B 6⊥⊥ C

(f) A 6⊥⊥ B|D
(g) B ⊥⊥ D|A,C

Answer:
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