CSE 473: Artificial Intelligence

Reinforcement Learning

Instructor: Luke Zettlemoyer

University of Washington

[These slides were adapted from Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

Reinforcement Learning

Reinforcement Learning

\

Agent \

State: s :
Actions: a

Reward: r

Environment

= Basic idea:

= Receive feedback in the form of rewards

= Agent’s utility is defined by the reward function

= Must (learn to) act so as to maximize expected rewards
= All learning is based on observed samples of outcomes!

Example: Learning to Walk

Initial A Learning Trial After Learning [1K Trials]

[Kohl and Stone, ICRA 2004]

Example: Learning to Walk

Initial
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — initial]

Example: Learning to Walk

Training
[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — training]

Example: Learning to Walk

| —

Finished

[Kohl and Stone, ICRA 2004] [Video: AIBO WALK — finished]

Example: Sidewinding

[Andrew Ng] [Video: SNAKE — climbStep+sidewinding]

Example: Toddler Robot

[Tedrake, Zhang and Seung, 2005] [Video: TODDLER — 40s]

The Crawler!

[Demo: Crawler Bot (L10D1)] [You, in Project 3]

Video of Demo Crawler Bot

{Run| Skip 1000000 step Skip 30000 steps || Reset speed counter

eps- | epsee [SO gam || gamee [SR apna- [| apna--

Reinforcement Learning

= Still assume a Markov decision process (MDP):
= Asetofstatess&ES
= A set of actions (per state) A
= A model T(s,a,s’)

= A reward function R(s,a,s’)

Overheated

= Still looking for a policy mt(s)

= New twist: don’t know T or R

= |.e. we don’t know which states are good or what the actions do
= Must actually try actions and states out to learn

Offline (MDPs) vs. Online (RL)

Offline Solution Online Learning

Model-Based Learning

Model-Based Learning

= Model-Based Idea:
= |Learn an approximate model based on experiences
= Solve for values as if the learned model were correct

= Step 1: Learn empirical MDP model
= Count outcomes s’ for each s, a
= Normalize to give an estimate of T(s, a, s’)
= Discover each R(s,a,s’) when we experience (s, a, s’)

= Step 2: Solve the learned MDP

= For example, use value iteration, as before

Example: Model-Based Learning

Input Policy nt

Assume:y =1

Observed Episodes (Training)

Episode 1

4)
B, east, C, -1

C, east, D, -1

L D, exit, X, +10/

Episode 3

4 N
E, north, C, -1
C,east, D, -1

L D, exit, X, +10/

Episode 2

4)
B, east, C, -1

C, east, D, -1

L D, exit, X, +10/

Episode 4

4)
E, north, C, -1

C, east, A, -1

L A, exit, X, —10/

Learned Model

T(s,a,s")

-

4 T(B, east, C) =1.00

T(C, east, D) =0.75
T(C, east, A) =0.25

\

J

R(s,a,s")

-

-

R(B, east, C) =-1
R(C, east, D) =-1
R(D, exit, x) = +10

~

J

Example: Expected Age

Goal: Compute expected age of CSE 473 students

Known P(A) A
E[A]=) P(a)-a =035x20+...

Without P(A), instead collect samples [a, a,, ... a\]

/ Unknown P(A): “Model Based” \ / Unknown P(A): “Model Free” \

Why does this P(a) = num (a) Why does this

work? Because N E[A] ~ 1 Za' work? Because
eventually you . N &= samples appear
learn the right E[A] = Z P(a)-a ‘ with the right

model. a frequencies.
DN

—

Model-Free Learning

Preview: Gridworld Reinforcement Learning

Passive Reinforcement Learning

Passive Reinforcement Learning

= Simplified task: policy evaluation
" |nput: a fixed policy t(s)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
= Goal: learn the state values

" |n this case:
= |Learner is “along for the ride”
= No choice about what actions to take
= Just execute the policy and learn from experience
= This is NOT offline planning! You actually take actions in the world.

Direct Evaluation

= Goal: Compute values for each state under i

" |dea: Average together observed sample values
= Act according to

= Every time you visit a state, write down what the
sum of discounted rewards turned out to be

= Average those samples

= This is called direct evaluation

Input Policy nt

Example: Direct Evaluation

Observed Episodes (Training)

Episode 1

4)
B, east, C, -1

C, east, D, -1

Assume:y =1

L D, exit, X, +10/

Episode 3

4 N
E, north, C, -1
C,east, D, -1

Episode 2

4)
B, east, C, -1

C, east, D, -1

L D, exit, X, +1O/

L D, exit, X, +10/

Episode 4

4 N
E, north, C, -1
C, east, A, -1

L A, exit, X, —10)

Output Values

Problems with Direct Evaluation

= What’s good about direct evaluation? Output Values
" |t’s easy to understand

" |t doesn’t require any knowledge of T, R

" |t eventually computes the correct average values,
using just sample transitions

= \What bad about it?
= |t wastes information about state connections

If Band E both go to C

under this policy, how can
" So, it takes a long time to learn their values be different?

= Each state must be learned separately

Why Not Use Policy Evaluation?

= Simplified Bellman updates calculate V for a fixed policy:

= Each round, replace V with a one-step-look-ahead layer over V (s)

Vo (s) =0 @ 7t(s)

Vi1 (s) < ST (s, m(s),) [R(s, m(s),8) + VI (H] _sials),s

= This approach fully exploited the connections between the states
= Unfortunately, we need T and R to do it!

= Key question: how can we do this update to V without knowing T and R?
" |n other words, how to we take a weighted average without knowing the weights?

Sample-Based Policy Evaluation?

= \WWe want to improve our estimate of V by computing these averages:
ka—l—l(s) — ZT(S, 7w(s),s)[R(s,m(s),s) + q/V,f(s/)]

S
» |dea: Take samples of outcomes s’ (by doing the action!) and average

sample; = R(s,m(s), 3/1) -+ *kaW(s’l)

samples = R(s, m(s), 8/2) -+ kaﬁ(SIQ)

samplen, = R(s, m(s), an) -+ WV,:(S%)

1
Vid 1(8) + -) sample;
()

Temporal Difference Learning

Temporal Difference Learning

" Bigidea: learn from every experience!
= Update V(s) each time we experience a transition (s, a, s’, r)
= Likely outcomes s’ will contribute updates more often

" Temporal difference learning of values
= Policy still fixed, still doing evaluation!
= Move values toward value of whatever successor occurs: running average

Sample of V(s): sample = R(s,m(s),s") +yV™(s")
Update to V(s): VT(s) + (1 —a)V"™(s) 4+ (a)sample

Same update: V7T(s) <+ V" (s) + a(sample — V" (s))

Exponential Moving Average

= Exponential moving average
* The running interpolation update: I, = (1 — Oé) *ITp—1+ Q- Ty

= Makes recent samples more important:

Tp+(1—a) Tp1+(1—a)? zpo+...
1+ (1-0)+(1—a)?+...

Lp =

= Forgets about the past (distant past values were wrong anyway)

* Decreasing learning rate (alpha) can give converging averages

Example: Temporal Difference Learning

States

8 lclo

Assume:y=1,a=1/2

Observed Transitions

[B, east, C, -2] [C, east, D, -2]

oloe] alo]e] [a]3]]

VT(s) + (1 = a)V7(s) + a |R(s,m(s),s) +4V7(s))

Problems with TD Value Learning

= TD value leaning is a model-free way to do policy evaluation, mimicking
Bellman updates with running sample averages

= However, if we want to turn values into a (new) policy, we’re sunk:
m(s) = argmax Q(s,a)
a

Q(s,a) = ZT(S, a,s) [R(s, a,s’) + ’yV(s’)}

= |dea: learn Q-values, not values

= Makes action selection model-free too!

Active Reinforcement Learning

Active Reinforcement Learning

* Full reinforcement learning: optimal policies (like value iteration)
= You don’t know the transitions T(s,a,s’)
= You don’t know the rewards R(s,a,s’)
= You choose the actions now
= Goal: learn the optimal policy / values

" |n this case:
= |Learner makes choices!
» Fundamental tradeoff: exploration vs. exploitation
= This is NOT offline planning! You actually take actions in the world and
find out what happens...

Detour: Q-Value lteration

» Value iteration: find successive (depth-limited) values
= Start with V,(s) = 0, which we know is right
= GivenV,, calculate the depth k+1 values for all states:

Viet1(s) mC?XZT(S, a,s) {R(s, a,s) + nyk(s’)]

» But Q-values are more useful, so compute them instead
= Start with Qg(s,a) = 0, which we know is right
= Given Q,, calculate the depth k+1 g-values for all g-states:

Qit1(s,0) « Y T(s,0,5) |R(s.0,5) +7 maxQy(s',a)

S

Q-Learning

" Q-Learning: sample-based Q-value iteration

Qit1(s,0) < Y T(s,0,5) |R(s.a,5) +7 maxQy(s',a')

a

" Learn Q(s,a) values as you go vvv
= Receive a sample (s,a,s’,r) MM
= Consider your old estimate: Q(s,a)

% Xe
= Consider your new sample estimate: A A

sample = R(s,a,s') +ymaxQ(s', ') %%

" |ncorporate the new estimate into a running average:

Q(s,a) — (1 —a)Q(s,a) + () [sample]

Q-VALUES AFTER 1000 EPISODES

[Demo: Q-learning — gridworld (L10D2)]
[Demo: Q-learning — crawler (L10D3)]

Q learning with a fixed policy

P
s pas

Video of Demo Q-Learning -- Gridworld

DPPEPPK

CURRENT Q-VALUES
S

Q-Learning Properties

" Amazing result: Q-learning converges to optimal policy -- even
if you’re acting suboptimally!

" This is called off-policy learning

= (Caveats:
= You have to explore enough

®" You have to eventually make the learning rate
small enough

= .. but not decrease it too quickly
= Basically, in the limit, it doesn’t matter how you select actions (!)

Exploration vs. Exploitation

b7 7

AN
Srennc!

L £T0
S
(o~

How to Explore?

= Several schemes for forcing exploration

» Simplest: random actions (e-greedy)
= Every time step, flip a coin
= With (small) probability €, act randomly
= With (large) probability 1-¢, act on current policy

= Problems with random actions?

= You do eventually explore the space, but keep
thrashing around once learning is done

= One solution: lower € over time
= Another solution: exploration functions

[Demo: Q-learning — manual exploration — bridge grid (L11D2)]
[Demo: Q-learning — epsilon-greedy -- crawler (L11D3)]

Gridworld RL: e-greedy

Gridworld RL: e-greedy

Video of Demo Q-learning — Epsilon-Greedy — Crawler

Run’| Skip 1000000 step Skip 30000 steps | Reset speed counter

eps- [| epsee [gam- [0 | game- [apna- [| apna--

Exploration Functions

= When to explore?
= Random actions: explore a fixed amount

= Better idea: explore areas whose badness is not
(yet) established, eventually stop exploring

= Exploration function

= Takes a value estimate u and a visit count n, and
returns an optimistic utility, e.g. f(u,n) = u + k/n

Regular Q-Update: Q(s;a) <—a R(s,a,s") +~ max Q(s',d)
Modified Q-Update: Q(s,a) <—a R(s,a,s") +~ max f(Q(s',a"), N(s',a))

= Note: this propagates the “bonus” back to states that lead to unknown states as well!

[Demo: exploration — Q-learning — crawler — exploration function (L11D4)]

Video of Demo Q-learning — Exploration Function — Crawler

{Run]| Skip 1000000 step Skip 30000 steps | Reset speed counter

eoa- [| epeee [S gam [[55 | games S apna- [| apnaee

Regret

= Even if you learn the optimal policy,
you still make mistakes along the way!

= Regret is a measure of your total
mistake cost: the difference between
your (expected) rewards, including
youthful suboptimality, and optimal
(expected) rewards

= Minimizing regret goes beyond
learning to be optimal — it requires
optimally learning to be optimal

= Example: random exploration and
exploration functions both end up
optimal, but random exploration has
higher regret

Approximate Q-Learning

Generalizing Across States

= Basic Q-Learning keeps a table of all g-values

" |n realistic situations, we cannot possibly learn

about every single state!
= Too many states to visit them all in training

= Too many states to hold the g-tables in memory

" |nstead, we want to generalize:
= Learn about some small number of training states from

experience
= Generalize that experience to new, similar situations

= This is a fundamental idea in machine learning, and we’ll
see it over and over again

[demo — RL pacman]

Example: Pacman

Let’s say we discover In naive g-learning, Or even this one!
through experience we know nothing
that this state is bad: about this state:

[Demo: Q-learning — pacman — tiny — watch all (L11D5)]
[Demo: Q-learning — pacman — tiny — silent train (L11D6)]
[Demo: Q-learning — pacman — tricky — watch all (L11D7)]

Video of Demo Q-Learning Pacman — Tiny — Watch All

File Edt Nawvigate Search Project Run Window Help
y w v

:;; ~ ‘—) - l{ v

e >

7% CS188 Pacman ’

Cl Console :2 ,
4
20 I
heg;:‘.:‘;;:‘.g 200 episcdes-of Training
1 c cCNY

Pacman died! Score:

Video of Demo Q-Learning Pacman — Tiny — Silent Train

le Edit Nawigate Search Project Run

f"v {;,v‘)v%v .‘;‘ &y v v

& 7 S
74 CS5188 Pacman — | —_ —

] Console 27
20

Video of Demo Q-Learning Pacman — Tricky — Watch All

f FyJev - caipse m—

r — ™
¥ 7% C5188 Pacman - || |

il SCORE: -505

.......
+2aQl122120

Feature-Based Representations

Solution: describe a state using a vector of
features (properties)
= Features are functions from states to real numbers (often
0/1) that capture important properties of the state

= Example features:
= Distance to closest ghost
= Distance to closest dot
= Number of ghosts
= 1 /(dist to dot)?
= |s Pacman in a tunnel? (0/1)

= |s it the exact state on this slide?

= Can also describe a g-state (s, a) with features (e.g.
action moves closer to food)

Linear Value Functions

» Using a feature representation, we can write a q function (or value function) for any
state using a few weights:

V(s) =wi1f1(s) +wafa(s) + ...+ wnfn(s)
Q(87 CL) — wlfl(sa a,)—l—’UJQfQ(S, CL)"- . °+wnf’n(87 a)
= Advantage: our experience is summed up in a few powerful numbers

* Disadvantage: states may share features but actually be very different in value!

Approximate Q-Learning

QUs,0) = wifi(s @) wafals,)+ Aunfals,a)

" Q-learning with linear Q-functions:

transition = (s,a,r,s’)
difference = [r + 7 max Qs a’)] — Q(s,a)
Q(s,a) +— Q(s,a) + «[difference] Exact Q’s

w; <+ w; + « [difference] f;(s,a) Approximate Q’s

= |ntuitive interpretation:
= Adjust weights of active features

= E.g., if something unexpectedly bad happens, blame the features that were on:
disprefer all states with that state’s features

" Formal justification: online least squares

Example: Q-Pacman

Q(S,CL) — 4.0fDOT(S,CL) — 1.0fGST(S,CL)

fDOT(S, NORTH) = 0.5

a = NORTH /

r = —500
fasr(s,NORTH) = 1.0

Q(s,NORTH) = +1 Q(s,)=0
r + v max Q(s',a’) = —-500+0

wpor +— 4.0+ a[-501]0.5
wosy — —1.0 + a[-501] 1.0

Q(s,a) = 3.0fpor(s,a) —3.0fgsT(5,a) (pemo: approximate o

learning pacman (L11D10)]

difference = —501

Video of Demo Approximate Q-Learning -- Pacman

;‘;)—_ v ‘) v Q;h -

(= \
%4 CS188 Pacman I ——

Q-Learning and Least Squares

Linear Approximation: Regression™

407

20

f1(x)

Prediction:
Yy = wo + wi f1(x)

Prediction:

y; = wo + wi f1(x) + wo fo(x)

Optimization: Least Squares™

1

2
total error =Y (y; — §:)° =3 (yz- - Zwkfk:(%')>
- k

. Error or “residual”
Observation Y

Prediction g

0 f1(x) :

Minimizing Error*®

Imagine we had only one point x, with features f(x), target value y, and weights w:

2
error(w) = % (y — Zwkfk(az))
k
0 egror(w) = — (y — Z’L%fk(@) fm(x)
Wi, k

Wi, <= Wm + (y — Zwkfk($)> fm(x)
P

Approximate q update explained:
W, < Wm + & [7“ + max Qs a") — Q(s, a)} fm(s,a)

“target” “prediction”

Overfitting: Why Limiting Capacity Can Help*

Policy Search

Policy Search

Problem: often the feature-based policies that work well (win games, maximize
utilities) aren’t the ones that approximate V / Q best
= E.g. your value functions from project 2 were probably horrible estimates of future rewards, but they
still produced good decisions
= Q-learning’s priority: get Q-values close (modeling)
= Action selection priority: get ordering of Q-values right (prediction)
= WeEe'll see this distinction between modeling and prediction again later in the course

Solution: learn policies that maximize rewards, not the values that predict them

Policy search: start with an ok solution (e.g. Q-learning) then fine-tune by hill climbing
on feature weights

Policy Search

= Simplest policy search:
= Start with an initial linear value function or Q-function

* Nudge each feature weight up and down and see if your policy is better than before

=" Problems:
= How do we tell the policy got better?
= Need to run many sample episodes!
" |f there are a lot of features, this can be impractical

= Better methods exploit lookahead structure, sample wisely, change
multiple parameters...

Policy Search

[Andrew Ng] [Video: HELICOPTER]

Conclusion

= We’'re done with Part |: Search and Planning!

= We've seen how Al methods can solve
problems in:
= Search
= Constraint Satisfaction Problems
= Games
= Markov Decision Problems
= Reinforcement Learning

= Next up: Part Il: Uncertainty and Learning!

