
CSE	473:	Ar+ficial	Intelligence	
	Uncertainty	and	Expec+max	Tree	Search	

Instructors:	Luke	ZeDlemoyer	

Univeristy	of	Washington	
[These	slides	were	adapted	from	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	hDp://ai.berkeley.edu.]	



Uncertain	Outcomes	



Worst-Case	vs.	Average	Case	

10	 10	 9	 100	

max	

min	

Idea:	Uncertain	outcomes	controlled	by	chance,	not	an	adversary!	



Expec+max	Search	

§  Why	wouldn’t	we	know	what	the	result	of	an	ac+on	will	be?	
§  Explicit	randomness:	rolling	dice	
§  Unpredictable	opponents:	the	ghosts	respond	randomly	
§  Ac+ons	can	fail:	when	moving	a	robot,	wheels	might	slip	

§  Values	should	now	reflect	average-case	(expec+max)	
outcomes,	not	worst-case	(minimax)	outcomes	

§  Expec+max	search:	compute	the	average	score	under	
op+mal	play	
§  Max	nodes	as	in	minimax	search	
§  Chance	nodes	are	like	min	nodes	but	the	outcome	is	uncertain	
§  Calculate	their	expected	u+li+es	
§  I.e.	take	weighted	average	(expecta+on)	of	children	

§  Later,	we’ll	learn	how	to	formalize	the	underlying	uncertain-
result	problems	as	Markov	Decision	Processes	

10	 4	 5	 7	

max	

chance	

10	 10	 9	 100	

[Demo:	min	vs	exp	(L7D1,2)]	



Video	of	Demo	Min	vs.	Exp	(Min)	



Video	of	Demo	Min	vs.	Exp	(Exp)	



Expec+max	Pseudocode	
	

def	value(state):	
if	the	state	is	a	terminal	state:	return	the	state’s	u+lity	
if	the	next	agent	is	MAX:	return	max-value(state)	
if	the	next	agent	is	EXP:	return	exp-value(state)	

def	exp-value(state):	
ini+alize	v	=	0	
for	each	successor	of	state:	
	 	p	=	probability(successor)	
v	+=	p	*	value(successor)	

return	v	
	

	

def	max-value(state):	
ini+alize	v	=	-∞ 
for	each	successor	of	state:	

v	=	max(v,	value(successor))	
return	v	



Expec+max	Pseudocode	

def	exp-value(state):	
ini+alize	v	=	0	
for	each	successor	of	state:	
	 	p	=	probability(successor)	
v	+=	p	*	value(successor)	

return	v	
	

5	 7	8	 24	 -12	

1/2	
1/3	

1/6	

v	=	(1/2)	(8)	+	(1/3)	(24)	+	(1/6)	(-12)	=	10	



Expec+max	Example	

12 9 6 0 3 2 15 4 6 



Expec+max	Pruning?	

12 9 3 2 



Depth-Limited	Expec+max	

…	

…	

492	 362	 …	

400	 300	
Es+mate	of	true	
expec+max	value	
(which	would	
require	a	lot	of	

work	to	compute)	



Probabili+es	



Reminder:	Probabili+es	
§  A	random	variable	represents	an	event	whose	outcome	is	unknown	
§  A	probability	distribu+on	is	an	assignment	of	weights	to	outcomes	

§  Example:	Traffic	on	freeway	
§  Random	variable:	T	=	whether	there’s	traffic	
§  Outcomes:	T	in	{none,	light,	heavy}	
§  Distribu+on:	P(T=none)	=	0.25,	P(T=light)	=	0.50,	P(T=heavy)	=	0.25	

§  Some	laws	of	probability	(more	later):	
§  Probabili+es	are	always	non-nega+ve	
§  Probabili+es	over	all	possible	outcomes	sum	to	one	

§  As	we	get	more	evidence,	probabili+es	may	change:	
§  P(T=heavy)	=	0.25,	P(T=heavy	|	Hour=8am)	=	0.60	
§  We’ll	talk	about	methods	for	reasoning	and	upda+ng	probabili+es	later	

0.25	

0.50	

0.25	



§  The	expected	value	of	a	func+on	of	a	random	variable	is	the	
average,	weighted	by	the	probability	distribu+on	over	
outcomes	

§  Example:	How	long	to	get	to	the	airport?	

Reminder:	Expecta+ons	

0.25	 0.50	 0.25	Probability:	

20	min	 30	min	 60	min	Time:	
35	min	x	 x	 x	+	 +	



§  In	expec+max	search,	we	have	a	probabilis+c	model	
of	how	the	opponent	(or	environment)	will	behave	in	
any	state	
§  Model	could	be	a	simple	uniform	distribu+on	(roll	a	die)	
§  Model	could	be	sophis+cated	and	require	a	great	deal	of	

computa+on	
§  We	have	a	chance	node	for	any	outcome	out	of	our	control:	

opponent	or	environment	
§  The	model	might	say	that	adversarial	ac+ons	are	likely!	

§  For	now,	assume	each	chance	node	magically	comes	
along	with	probabili+es	that	specify	the	distribu+on	
over	its	outcomes	

What	Probabili+es	to	Use?	

Having	a	probabilis.c	belief	about	
another	agent’s	ac.on	does	not	mean	
that	the	agent	is	flipping	any	coins!	



Quiz:	Informed	Probabili+es	

§  Let’s	say	you	know	that	your	opponent	is	actually	running	a	depth	2	minimax,	using	the	
result	80%	of	the	+me,	and	moving	randomly	otherwise	

§  Ques+on:	What	tree	search	should	you	use?			

0.1										0.9	

§  Answer:	Expec+max!	
§  To	figure	out	EACH	chance	node’s	probabili+es,	

you	have	to	run	a	simula+on	of	your	opponent	
§  This	kind	of	thing	gets	very	slow	very	quickly	
§  Even	worse	if	you	have	to	simulate	your	

opponent	simula+ng	you…	
§  …	except	for	minimax,	which	has	the	nice	

property	that	it	all	collapses	into	one	game	tree	



Modeling	Assump+ons	



The	Dangers	of	Op+mism	and	Pessimism	

Dangerous	Op+mism	
Assuming	chance	when	the	world	is	adversarial	

Dangerous	Pessimism	
Assuming	the	worst	case	when	it’s	not	likely	



Assump+ons	vs.	Reality	

Adversarial	Ghost	 Random	Ghost	

Minimax	
Pacman	

Expec+max	
Pacman	

[Demos:	world	assump+ons	(L7D3,4,5,6)]	

Results	from	playing	5	games	

Pacman	used	depth	4	search	with	an	eval	func+on	that	avoids	trouble	
Ghost	used	depth	2	search	with	an	eval	func+on	that	seeks	Pacman	

Won	5/5	
	

Avg.	Score:	503	

Won	5/5	
	

Avg.	Score:	493	

Won	1/5	
	

Avg.	Score:	-303	

Won	5/5	
	

Avg.	Score:	483	



Video	of	Demo	World	Assump+ons	
Random	Ghost	–	Expec+max	Pacman	



Video	of	Demo	World	Assump+ons	
Adversarial	Ghost	–	Minimax	Pacman	



Video	of	Demo	World	Assump+ons	
Adversarial	Ghost	–	Expec+max	Pacman	



Video	of	Demo	World	Assump+ons	
Random	Ghost	–	Minimax	Pacman	



Other	Game	Types	



Mixed	Layer	Types	

§  E.g.	Backgammon	
§  Expec+minimax	

§  Environment	is	an	
extra	“random	
agent”	player	that	
moves	axer	each	
min/max	agent	

§  Each	node	
computes	the	
appropriate	
combina+on	of	its	
children	



Example:	Backgammon	

§  Dice	rolls	increase	b:	21	possible	rolls	with	2	dice	
§  Backgammon	≈	20	legal	moves	
§  Depth	2	=	20	x	(21	x	20)3	=	1.2	x	109	

§  As	depth	increases,	probability	of	reaching	a	given	
search	node	shrinks	
§  So	usefulness	of	search	is	diminished	
§  So	limi+ng	depth	is	less	damaging	
§  But	pruning	is	trickier…	

§  Historic	AI:	TDGammon	uses	depth-2	search	+	very	
good	evalua+on	func+on	+	reinforcement	learning:		
world-champion	level	play	

§  1st	AI	world	champion	in	any	game!	

Image:	Wikipedia	



Mul+-Agent	U+li+es	

§  What	if	the	game	is	not	zero-sum,	or	has	mul+ple	players?	

§  Generaliza+on	of	minimax:	
§  Terminals	have	u+lity	tuples	
§  Node	values	are	also	u+lity	tuples	
§  Each	player	maximizes	its	own	component	
§  Can	give	rise	to	coopera+on	and	
	compe++on	dynamically…	

1,6,6	 7,1,2	 6,1,2	 7,2,1	 5,1,7	 1,5,2	 7,7,1	 5,2,5	


