
CSE	473:	Ar+ficial	Intelligence	
	Adversarial	Search	

Instructor:	Luke	Ze?lemoyer	
University	of	Washington	

[These	slides	were	adapted	from	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	h?p://ai.berkeley.edu.]	



Game	Playing	State-of-the-Art	
§  Checkers:	1950:	First	computer	player.		1994:	First	

computer	champion:	Chinook	ended	40-year-reign	
of	human	champion	Marion	Tinsley	using	complete	
8-piece	endgame.	2007:	Checkers	solved!	

§  Chess:	1997:	Deep	Blue	defeats	human	champion	
Gary	Kasparov	in	a	six-game	match.		Deep	Blue	
examined	200M	posi+ons	per	second,	used	very	
sophis+cated	evalua+on	and	undisclosed	methods	
for	extending	some	lines	of	search	up	to	40	ply.		
Current	programs	are	even	be?er,	if	less	historic.	

§  Go:	Human	champions	are	now	star+ng	to	be	
challenged	by	machines,	though	the	best	humans	
s+ll	beat	the	best	machines	(at	least	un+l	one	
month	ago!!!).	In	go,	b	>	300!		Classic	programs	use	
pa?ern	knowledge	bases,	but	big	recent	advances	
use	Monte	Carlo	(randomized)	expansion	methods.	

§  Pacman	



Behavior	from	Computa+on	

[Demo:	mystery	pacman	(L6D1)]	



Video	of	Demo	Mystery	Pacman	



Adversarial	Games	



§  Many	different	kinds	of	games!	

§  Axes:	
§  Determinis+c	or	stochas+c?	
§  One,	two,	or	more	players?	
§  Zero	sum?	
§  Perfect	informa+on	(can	you	see	the	state)?	

§  Want	algorithms	for	calcula+ng	a	strategy	(policy)	which	recommends	a	
move	from	each	state	

Types	of	Games	



Determinis+c	Games	

§  Many	possible	formaliza+ons,	one	is:	
§  States:	S	(start	at	s0)	
§  Players:	P={1...N}	(usually	take	turns)	
§  Ac+ons:	A	(may	depend	on	player	/	state)	
§  Transi+on	Func+on:	SxA	→	S	
§  Terminal	Test:	S	→	{t,f}	
§  Terminal	U+li+es:	SxP	→	R	

§  Solu+on	for	a	player	is	a	policy:	S	→	A	



Zero-Sum	Games	

§  Zero-Sum	Games	
§  Agents	have	opposite	u+li+es	(values	on	

outcomes)	
§  Lets	us	think	of	a	single	value	that	one	

maximizes	and	the	other	minimizes	
§  Adversarial,	pure	compe++on	

§  General	Games	
§  Agents	have	independent	u+li+es	(values	on	

outcomes)	
§  Coopera+on,	indifference,	compe++on,	and	

more	are	all	possible	
§  More	later	on	non-zero-sum	games	



Adversarial	Search	



Single-Agent	Trees	

8	

2	 0	 2	 6	 4	 6	…	 …	



Value	of	a	State	

Non-Terminal	States:	

8	

2	 0	 2	 6	 4	 6	…	 …	 Terminal	States:	

Value	of	a	state:	
The	best	achievable	
outcome	(u+lity)	
from	that	state	



Adversarial	Game	Trees	

-20	 -8	 -18	 -5	 -10	 +4	…	 …	 -20	 +8	



Minimax	Values	

+8	-10	-5	-8	

States	Under	Agent’s	Control:	

Terminal	States:	

States	Under	Opponent’s	Control:	



Tic-Tac-Toe	Game	Tree	



Adversarial	Search	(Minimax)	

§  Determinis+c,	zero-sum	games:	
§  Tic-tac-toe,	chess,	checkers	
§  One	player	maximizes	result	
§  The	other	minimizes	result	

§  Minimax	search:	
§  A	state-space	search	tree	
§  Players	alternate	turns	
§  Compute	each	node’s	minimax	value:	

the	best	achievable	u+lity	against	a	
ra+onal	(op+mal)	adversary	

8	 2	 5	 6	

max	

min	2	 5	

5	

Terminal	values:	
part	of	the	game		

Minimax	values:	
computed	recursively	



Minimax	Implementa+on	

def	min-value(state):	
ini+alize	v	=	+∞ 
for	each	successor	of	state:	

v	=	min(v,	max-value(successor))	
return	v	

	

def	max-value(state):	
ini+alize	v	=	-∞ 
for	each	successor	of	state:	

v	=	max(v,	min-value(successor))	
return	v	



Minimax	Implementa+on	(Dispatch)	
	

def	value(state):	
if	the	state	is	a	terminal	state:	return	the	state’s	u+lity	
if	the	next	agent	is	MAX:	return	max-value(state)	
if	the	next	agent	is	MIN:	return	min-value(state)	

def	min-value(state):	
ini+alize	v	=	+∞ 
for	each	successor	of	state:	

v	=	min(v,	value(successor))	
return	v	
	

	

def	max-value(state):	
ini+alize	v	=	-∞ 
for	each	successor	of	state:	

v	=	max(v,	value(successor))	
return	v	



Minimax	Example	

12 8 5 2 3 2 14 4 6 



Minimax	Efficiency	

§  How	efficient	is	minimax?	
§  Just	like	(exhaus+ve)	DFS	
§  Time:	O(bm)	
§  Space:	O(bm)	

§  Example:	For	chess,	b	≈	35,	m	≈	100	
§  Exact	solu+on	is	completely	infeasible	
§  But,	do	we	need	to	explore	the	whole	

tree?	



Minimax	Proper+es	

Op+mal	against	a	perfect	player.		Otherwise?	

10	 10	 9	 100	

max	

min	

[Demo:	min	vs	exp	(L6D2,	L6D3)]	



Video	of	Demo	Min	vs.	Exp	(Min)	



Video	of	Demo	Min	vs.	Exp	(Exp)	



Resource	Limits	



Resource	Limits	

§  Problem:	In	realis+c	games,	cannot	search	to	leaves!	

§  Solu+on:	Depth-limited	search	
§  Instead,	search	only	to	a	limited	depth	in	the	tree	
§  Replace	terminal	u+li+es	with	an	evalua+on	func+on	for	

non-terminal	posi+ons	

§  Example:	
§  Suppose	we	have	100	seconds,	can	explore	10K	nodes	/	sec	
§  So	can	check	1M	nodes	per	move	
§  α-β	reaches	about	depth	8	–	decent	chess	program	

§  Guarantee	of	op+mal	play	is	gone	

§  More	plies	makes	a	BIG	difference	

§  Use	itera+ve	deepening	for	an	any+me	algorithm	
? ? ? ? 

-1	 -2	 4	 9	

4	

min	

max	

-2	 4	



Depth	Ma?ers	

§  Evalua+on	func+ons	are	always	
imperfect	

§  The	deeper	in	the	tree	the	
evalua+on	func+on	is	buried,	the	
less	the	quality	of	the	evalua+on	
func+on	ma?ers	

§  An	important	example	of	the	
tradeoff	between	complexity	of	
features	and	complexity	of	
computa+on	

[Demo:	depth	limited	(L6D4,	L6D5)]	



Limited	Depth	

Depth 2: 



Limited	Depth	

Depth 10: 



Evalua+on	Func+ons	



Evalua+on	Func+ons	
§  Evalua+on	func+ons	score	non-terminals	in	depth-limited	search	

§  Ideal	func+on:	returns	the	actual	minimax	value	of	the	posi+on	
§  In	prac+ce:	typically	weighted	linear	sum	of	features:	

§  e.g.		f1(s)	=	(num	white	queens	–	num	black	queens),	etc.	



Evalua+on	for	Pacman	

[Demo:	thrashing	d=2,	thrashing	d=2	(fixed	evalua+on	func+on),	smart	ghosts	coordinate	(L6D6,7,8,10)]	



Video	of	Demo	Thrashing	(d=2)	



Why	Pacman	Starves	

§  A	danger	of	replanning	agents!	
§  He	knows	his	score	will	go	up	by	ea+ng	the	dot	now	(west,	east)	
§  He	knows	his	score	will	go	up	just	as	much	by	ea+ng	the	dot	later	(east,	west)	
§  There	are	no	point-scoring	opportuni+es	aver	ea+ng	the	dot	(within	the	horizon,	two	here)	
§  Therefore,	wai+ng	seems	just	as	good	as	ea+ng:	he	may	go	east,	then	back	west	in	the	next	

round	of	replanning!	



Video	of	Demo	Thrashing	--	Fixed	(d=2)	



Game	Tree	Pruning	



Minimax	Example	

12 8 5 2 3 2 14 4 6 



Minimax	Pruning	

12 8 5 2 3 2 14 



Alpha-Beta	Pruning	Example	

12 5 1 3 2 

8 

14 

≥8 

3 ≤2 ≤1 

3 

α is MAX’s best alternative here or above 
β is MIN’s best alternative here or above 

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=+∞

α=-∞
β=3 

α=-∞
β=3 

α=-∞
β=3 

α=-∞
β=3 

α=8 
β=3 

α=3 
β=+∞

α=3 
β=+∞

α=3 
β=+∞

α=3 
β=+∞

α=3 
β=2 

α=3 
β=+∞

α=3 
β=14 

α=3 
β=5 

α=3 
β=1 



Alpha-Beta	Pruning	

§  General	configura+on	(MIN	version)	
§  We’re	compu+ng	the	MIN-VALUE	at	some	node	n	
§  We’re	looping	over	n’s	children	

§  n’s	es+mate	of	the	childrens’	min	is	dropping	
§  Who	cares	about	n’s	value?		MAX	
§  Let	a	be	the	best	value	that	MAX	can	get	at	any	choice	

point	along	the	current	path	from	the	root	

§  If	n	becomes	worse	than	a,	MAX	will	avoid	it,	so	we	can	
stop	considering	n’s	other	children	(it’s	already	bad	
enough	that	it	won’t	be	played)	

§  MAX	version	is	symmetric	

MAX	

MIN	

MAX	

MIN	

a	

n	



Alpha-Beta	Implementa+on	

def	min-value(state	,	α,	β):	
ini+alize	v	=	+∞ 
for	each	successor	of	state:	

v	=	min(v,	value(successor,	α,	β))	
if	v	≤	α	return	v	
β	=	min(β,	v)	

return	v	

	

def	max-value(state,	α,	β):	
ini+alize	v	=	-∞ 
for	each	successor	of	state:	

v	=	max(v,	value(successor,	α,	β))	
if	v	≥	β	return	v	
α	=	max(α,	v)	

return	v	

α:	MAX’s	best	op+on	on	path	to	root	
β:	MIN’s	best	op+on	on	path	to	root	



Alpha-Beta	Pruning	Proper+es	

§  This	pruning	has	no	effect	on	minimax	value	computed	for	the	root!	

§  Values	of	intermediate	nodes	might	be	wrong	
§  Important:	children	of	the	root	may	have	the	wrong	value	
§  So	the	most	naïve	version	won’t	let	you	do	ac+on	selec+on	

§  Good	child	ordering	improves	effec+veness	of	pruning	

§  With	“perfect	ordering”:	
§  Time	complexity	drops	to	O(bm/2)	
§  Doubles	solvable	depth!	
§  Full	search	of,	e.g.	chess,	is	s+ll	hopeless…	

§  This	is	a	simple	example	of	metareasoning	(compu+ng	about	what	to	compute)	

10 10 0 

max 

min 



Alpha-Beta	Quiz	



Alpha-Beta	Quiz	2	



Next	Time:	Uncertainty!	


