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CSE 473: Artificial Intelligence

Bayesian Networks - Learning

Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, 
Stuart Russell, Andrew Moore & Luke Zettlemoyer
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What action 
next?

Percepts Actions

Environment

Static vs. Dynamic

Fully 
vs.

Partially 
Observable

Perfect
vs.

Noisy

Deterministic 
vs. 

Stochastic

Instantaneous 
vs. 

Durative
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AI Topics 
§ Search

§ Problem Spaces
§ BFS, DFS, UCS, A* (tree and 

graph)
§ Completeness and Optimality
§ Heuristics: admissibility and 

consistency
§ CSPs

§ Constraint graphs, backtracking 
search

§ Forward checking, AC3 constraint 
propagation, ordering heuristics

§ Games
§ Minimax, Alpha-beta pruning, 

Expectimax, Evaluation Functions
§ MDPs

§ Bellman equations
§ Value iteration & policy iteration
§ RTDP, LAO* & UCT
§ POMDPs 

§ Reinforcement Learning
§ Exploration vs. Exploitation
§ Model-based vs. model-free
§ Q-learning
§ Linear value function approx.

§ Hidden Markov Models
§ Markov chains
§ Forward algorithm
§ Particle Filter

§ Bayesian Networks
§ Basic definition, independence (d-sep)
§ Variable elimination
§ Gibbs sampling

§ Learning
§ BN parameters with data complete &

incomplete (Expectation Maximization)
§ Search thru space of BN structures

Search thru a 

§ Set of states
§ Operators [and costs]
§ Start state
§ Goal state [test]

• Path: start Þ a state satisfying goal test
• [May require shortest path]
• [Sometimes just need state passing test]

• Input:

• Output:

Problem Space / State Space 
Ex.  Proving a trig identity, e.g.  sin2(x) = ½ - ½ cos(2x)  
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Today

§ Bonus Topic – Hybrid Bayes Nets
§ Learning

§ Parameter Learning & Priors
§ Expectation Maximization
§ Structure Learning

5
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Bayes Nets

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(E=t) Pr(E=f)
0.01    0.99

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio
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Continuous Variables

Earthquake

Pr(E=t) Pr(E=f)
0.01    0.99

So far: assuming variables have discrete values
Could also allow continuous values, E Î R, 
How specify probabilities?  (explicit CPT would be infinitely large)

© Daniel S. Weld

Continuous Variables

Earthquake

Pr(E=t) Pr(E=f)
0.01    0.99

So far: assuming variables have discrete values
Could also allow continuous values, E Î R, 
And specify probabilities using a continuous distribution, such as a Gaussian
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Continuous Variables

Earthquake

Pr(E=x)
mean: µ = 6

variance: s = 2

So far: assuming variables have discrete values
Could also allow continuous values, E Î R, 
And specify probabilities using a continuous distribution, such as a Gaussian

© Daniel S. Weld

Continuous Variables

Earthquake

Aliens

Pr(E|A)
a µ = 6

s = 2
a µ = 1

s = 3

Pr(A=t) Pr(A=f)
0.01    0.99
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Learning

?

17
©2005-2009 Carlos Guestrin

Supremacy of Machine Learning

§ Machine learning is preferred approach to
§ Speech recognition, Natural language processing
§ Web search – result ranking
§ Computer vision
§ Medical outcomes analysis
§ Robot control
§ Computational biology
§ Sensor networks
§ …

§ This trend is accelerating
§ Improved machine learning algorithms 
§ Improved data capture, networking, faster computers
§ Software too complex to write by hand
§ New sensors / IO devices
§ Demand for self-customization to user, environment



12/5/16

7

What is Machine Learning ?

Data UnderstandingMachine 
Learning

19

Machine Learning
Study of algorithms that
§ improve their performance
§ at some task
§ with experience
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Machine Learning
Study of algorithms that
§ improve their performance
§ at some task
§ with experience

Learning Bayes Networks
§ Learning Parameters for a Bayesian Network

§ Fully observable variables
§ Maximum Likelihood (ML), MAP & Bayesian estimation 
§ Example: Naïve Bayes for text classification

§ Hidden variables 
§ Expectation Maximization (EM)

§ Learning Structure of Bayesian Networks
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The Origin of Bayes Nets

Earthquake Burglary

Alarm

Nbr2CallsNbr1Calls

Pr(B=t) Pr(B=f)
0.05    0.95

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Radio

© Daniel S. Weld

Learning Bayes Nets

Suppose …
1. Know structure & get complete observations of every var

2. Know structure & get observations only of some vars
Others are hidden  (learn with EM)

3. Don’t even know structure!
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Parameter Estimation and Bayesian 
Networks

E B R A J M

T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...We have: 

- Bayes Net structure and observations
- We need: Bayes Net parameters

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(B) = ?

P(¬B) = 1- P(B) 

= 0.4

= 0.6



12/5/16

11

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = 0.5

Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = 1.0 ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?
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Parameter Estimation and Bayesian 
Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

P(A|E,B) = ?
P(A|E,¬B) = ?
P(A|¬E,B) = ?
P(A|¬E,¬B) = ?

Parameter Estimation and Bayesian 
Networks

Coin
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Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Prior: Probability of a hypothesis 
before we make any observations

Coin Flip

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Which coin will I use?

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Uniform Prior: All hypothesis are equally likely 
before we make any observations
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Experiment 1: Heads

Which coin did I use?
P(C1|H) = ? P(C2|H) = ? P(C3|H) = ?

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1)=0.1 

C1 C2 C3

P(C1)=1/3 P(C2) = 1/3 P(C3) = 1/3

Experiment 1: Heads

Which coin did I use?
P(C1|H) = 0.066 P(C2|H) = 0.333 P(C3|H) = 0.6

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 1/3 P(C2) = 1/3 P(C3) = 1/3

Posterior: Probability of a hypothesis given data
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Using Prior Knowledge

§ Should we always use a Uniform Prior ?
§ Background knowledge:

Heads => we have to buy Dan chocolate
Dan likes chocolate…
=> Dan is more likely to use a coin biased in his favor

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

Using Background Knowledge

P(H|C2) = 0.5P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

We can encode it in the prior:
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Experiment 1: Heads
Which coin did I use?

P(C1|H) = 0.006 P(C2|H) = 0.165 P(C3|H) = 0.829

P(H|C2) = 0.5 P(H|C3) = 0.9P(H|C1) = 0.1

C1 C2 C3

P(C1) = 0.05 P(C2) = 0.25 P(C3) = 0.70

P(C1|H) = 0.066 P(C2|H) = 0.333 P(C3|H) = 0.600
Compare with ML posterior after Exp 1:

Probabilistic Estimation
Prior Hypothesis

Maximum Likelihood 
Estimate (MLE)

Maximum A 
Posteriori Estimate 

(MAP)

Bayesian Estimate

Uniform The most likely

Any The most likely

Any Weighted 
combination

Easy to compute

Still easy to compute
Incorporates prior 
knowledge

Minimizes error
Great when data is scarce
Potentially much harder to compute
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Bayesian Learning

Use Bayes rule:

Or equivalently:  P(Y | X) µ P(X | Y) P(Y)

Prior

Normalization

Data Likelihood

Posterior P(Y | X)  =  P(X |Y) P(Y)
P(X)

Really? Only 3 Coins?

P(H|C1) = 0.1

C1 C2

P(H|C3) = 0.9

C3

P(H|C2) = 0.5

More Likely….

0.1       0.5       0.9
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What Prior to Use?
§ Two common priors for continuous variables

§ Binary variable Beta
§ Posterior distribution is binomial
§ Easy to compute posterior
§ Easy to compute MAP estimate

§ MAP E[Beta(a, b)] = a/(a+b)

§ Discrete variable Dirichlet
§ Posterior distribution is multinomial
§ Easy to compute posterior 

© Daniel S. Weld
41

Estimation: Laplace Smoothing

§ Laplace’s estimate:
pretend you saw every outcome 
once more than you actually did

Another name for computing the MAP estimate with Dirichlet priors
(Bayesian justification)

H H T

(2+1) / (3+2)
= 3/5

PLAP(H) = 
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Output of Learning

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Pr(B=t) Pr(B=f)
0.05    0.95

Prior

Did Learning Work Well?

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

Pr(A|E,B)
e,b    0.9 (0.1)
e,b    0.2 (0.8)
e,b    0.85 (0.15)
e,b    0.01 (0.99)                 

Pr(B=t) Pr(B=f)
0.05    0.95

Can easily calculate  
P(data) for learned parameters
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Topics
§ Another Useful Bayes Net

§ Hybrid Discrete / Continuous
§ Learning Parameters for a Bayesian Network

§ Fully observable
§ Hidden variables (EM algorithm)

§ Learning Structure of Bayesian Networks

Why Learn Hidden Variables?
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How Learn Hidden Variables?

57

Chicken & Egg Problem

§ If we knew whether patient had disease
§ It would be easy to learn CPTs
§ But we can’t observe states, so we don’t!

Slide by Daniel S. Weld

• If we knew CPTs
– It would be easy to predict if patient had disease
– But we don’t, so we can’t!
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Face It…

58

59
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Continuous Variables

Earthquake

Aliens

Pr(E|A)
a µ = 6

s = 2
a µ = 1

s = 3

Pr(A=t) Pr(A=f)
0.01    0.99 hidden

© Daniel S. Weld

Learning with Continuous Variables

Earthquake

Pr(E=x)
mean: µ = ?

variance: s = ?
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Continuous Variables

Earthquake

Aliens

Pr(E|A)
a µ = 6

s = 2
a µ = 1

s = 3

Pr(A=t) Pr(A=f)
0.01    0.99 hidden

63

Simplest Version
§ Mixture of two distributions

§ Know: form of distribution & variance,
σ = .5

§ Just need mean of each distribution

.01   .03   .05   .07   .09

Slide by Daniel S. Weld
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64

Input Looks Like

.01     .03     .05     .07     .09

Slide by Daniel S. Weld

65

We Want to Predict

.01     .03     .05     .07     .09

?

Slide by Daniel S. Weld

Aliens CausedNaturally Caused
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Chicken & Egg

.01     .03     .05     .07     .09

Note that coloring instances would be easy 
if we knew Gausians….

Slide by Daniel S. Weld
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Chicken & Egg

.01     .03     .05     .07     .09

And finding Gausian parameters would be easy
If we knew the coloring

Slide by Daniel S. Weld
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Expectation Maximization (EM)

§ Pretend we do know the parameters
§ Initialize randomly: set  q1=?;   q2=?

.01   .03   .05   .07   .09

Slide by Daniel S. Weld

69

Expectation Maximization (EM)
§ Pretend we do know the parameters

§ Initialize randomly
§ [E step] Compute probability of instance having 

each possible value of the hidden variable

.01     .03     .05     .07     .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)
§ Pretend we do know the parameters

§ Initialize randomly
§ [E step] Compute probability of instance having 

each possible value of the hidden variable

.01     .03     .05     .07     .09

Slide by Daniel S. Weld
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Expectation Maximization (EM)
§ Pretend we do know the parameters

§ Initialize randomly
§ [E step] Compute probability of instance having 

each possible value of the hidden variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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ML Mean of Single Gaussian

Uml = argminuSi(xi – u)2

.01   .03   .05   .07   .09
Slide by Daniel S. Weld
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Expectation Maximization (EM)

§ [E step] Compute probability of instance having 
each possible value of the hidden variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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Expectation Maximization (EM)

§ [E step] Compute probability of instance having 
each possible value of the hidden variable

.01     .03     .05     .07     .09

Slide by Daniel S. Weld

75

Expectation Maximization (EM)

§ [E step] Compute probability of instance having 
each possible value of the hidden variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
values

Slide by Daniel S. Weld
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Expectation Maximization (EM)

§ [E step] Compute probability of instance having 
each possible value of the hidden variable

.01     .03     .05     .07     .09

[M step] Treating each instance as fractionally 
having both values compute the new parameter 
values

Slide by Daniel S. Weld

© Daniel S. Weld

Topics
§ Another Useful Bayes Net

§ Hybrid Discrete / Continuous
§ Learning Parameters for a Bayesian Network

§ Fully observable
§ Maximum Likelihood (ML), 
§ Maximum A Posteriori (MAP)

§ Hidden variables (EM algorithm)
§ Learning Structure of Bayesian Networks
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What if we don’t know 
structure?

Learning The Structure
of Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

Burglary Earthqk

Alarm

John	
calls

Mary	
calls
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Learning The Structure
of Bayesian Networks

E B R A J M
T F T T F T
F F F F F T
F T F T T T
F F F T T T
F T F F F F
...

Burglary Earthqk

Alarm

John	
calls

Mary	
calls

Learning The Structure
of Bayesian Networks

§ Search thru the space… 
§ of possible network structures!

§ For each structure, learn parameters
§ As just shown…

§ Pick the one that fits observed data best
§ Calculate P(data)
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A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

Two problems:
• Fully connected will be most probable
• Exponential number of structures

Learning The Structure
of Bayesian Networks

§ Search thru the space… 
§ of possible network structures!

§ For each structure, learn parameters
§ As just shown…

§ Pick the one that fits observed data best
§ Calculate P(data)

Two problems:
• Fully connected will be most probable

• Add penalty term (regularization) µ model complexity
• Exponential number of structures

• Local search
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Overfitting

Can represent strictly more P distributions

Can represent NOISE in training data

Often preforms WORSE on test data

Augment Score Function

§ Bayesian Information Criterion (BIC)
§ P(D | BN) – penalty
§ Penalty = α complexity
§ Penalty = α [½ (# parameters) Log (# data points)]

© Daniel S. Weld 85

Instance of “regularization”

Solves problem of “overfitting”
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A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

A

E

C

D

B

Hill-climbing Search

Tuning on Held-Out Data

§ Now we’ve got two kinds of unknowns
§ Parameters: the probabilities P(Y|X), P(Y)
§ Hyperparameters, like 

§ the amount of smoothing to do: k, or
§ regularization penalty, α

§ Where to learn?
§ Learn parameters from training data
§ Must tune hyperparameters on different data

§ Why?
§ For each value of the hyperparameters, train and 

test on the held-out data
§ Choose the best value and do a final test on the 

test data
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Baselines
§ First step: get a baseline

§ Baselines are very simple “straw man” procedures
§ Help determine how hard the task is
§ Help know what a “good” accuracy is

§ Weak baseline: most frequent label classifier
§ Gives all test instances whatever label was most common in the 

training set
§ E.g. for spam filtering, might label everything as ham
§ Accuracy might be very high if the problem is skewed
§ E.g. calling everything “spam” gets 86%, so a classifier that gets 

90% isn’t very good…

§ For real research, usually use previous work as a 
(strong) baseline


