# CSE 473: Artificial Intelligence 

## Bayesian Networks - Learning

## Dan Weld

Slides adapted from Jack Breese, Dan Klein, Daphne Koller, Stuart Russell, Andrew Moore \& Luke Zettlemoyer


## Al Topics

- Search
- Problem Spaces
- BFS, DFS, UCS, A* (rree and graph)
- Completeness and Optimality
- Heuristics: admissibility and consistency
- CSPs
- Constraint graphs, backtracking search
- Forward checking, AC3 constraint propagation, ordering heuristics
- Games
- Minimax, Alpha-beta pruning, Expectimax, Evaluation Functions
- MDPs
- Bellman equations
- Value iteration \& policy iteration
- 
- 
- Reinforcement Learning
- Exploration vs. Exploitation
- Model-based vs. model-free
- Q-learning
- Linear value function approx.
- Hidden Markov Models
- Markov chains
- Forward algorithm
- Particle Filter
- Bayesian Networks
- Basic definition, independence (d-sep)
- Variable elimination
- Learning
- BN parameters with data complete \& incomprete (Expectation Miaximization


## Search thru a Problem Space / State Space

Ex. Proving a trig identity, e.g. $\sin ^{2}(x)=1 / 2-1 / 2 \cos (2 x)$ - Input:

- Set of states
- Operators [and costs]
- Start state
- Goal state [test]
- Output:
- Path: start $\Rightarrow$ a state satisfying goal test
- [May require shortest path]
- [Sometimes just need state passing test]


## Today

- Bonus Topic - Hybrid Bayes Nets
- Learning
- Parameter Learning \& Priors
- Expectation Maximization
- Structure Learning


## Bayes Nets

| $\operatorname{Pr}(\mathrm{E}=\mathrm{t}) \operatorname{Pr}(\mathrm{E}=\mathrm{f})$ |
| :---: |
| 0.010 .99 |



## Continuous Variables

## $\operatorname{Pr}(\mathrm{E}=\mathrm{t}) \operatorname{Pr}(\mathrm{E}=\mathrm{f})$

 $0.01 \quad 0.99$
## Earthquake

So far: assuming variables have discrete values
Could also allow continuous values, $\mathrm{E} \in \mathrm{R}$,
How specify probabilities? (explicit CPT would be infinitely large)


## Continuous Variables

## $\operatorname{Pr}(E=t) \operatorname{Pr}(E=f)$

0.010 .99

## Earthquake

So far: assuming variables have discrete values
Could also allow continuous values, $\mathrm{E} \in \mathrm{R}$,
And specify probabilities using a continuous distribution, such as a Gaussian


$$
P(x \mid \mu, \sigma)=\frac{1}{\sigma \sqrt{2 \pi}} e^{\frac{-(x-\mu)^{2}}{2 \sigma^{2}}}
$$

## Continuous Variables



So far: assuming variables have discrete values
Could also allow continuous values, $\mathrm{E} \in \mathrm{R}$,
And specify probabilities using a continuous distribution, such as a Gaussian


## Continuous Variables

## $\operatorname{Pr}(A=t) \operatorname{Pr}(A=f)$ <br> 0.010 .99



## Learning



## Supremacy of Machine Learning

- Machine learning is preferred approach to
- Speech recognition, Natural language processing
- Web search - result ranking
- Computer vision
- Medical outcomes analysis
- Robot control
- Computational biology
- Sensor networks
- 
- This trend is accelerating
- Improved machine learning algorithms
- Improved data capture, networking, faster computers
- Software too complex to write by hand
- New sensors / IO devices
- Demand for self-customization to user, environment


## What is Machine Learning?

## Machine Learning

Study of algorithms that

- improve their performance

Ability to
accumulate reward

- at some task
- with experience

Executing actions
Executing actions


## Machine Learning

Study of algorithms that

- improve their performance ${ }^{\text {Prediction accuracy }}$
- at some task Answering probabilistic queries
- with experience

Seeing labeled data


## Learning Bayes Networks

- Learning Parameters for a Bayesian Network
- Fully observable variables
- Maximum Likelihood (ML), MAP \& Bayesian estimation
- Example: Naïve Bayes for text classification
- Hidden variables
- Expectation Maximization (EM)
- Learning Structure of Bayesian Networks


## The Origin of Bayes Nets



## Learning Bayes Nets

Suppose ...

1. Know structure \& get complete observations of every var
2. Know structure \& get observations only of some vars Others are hidden (learn with EM)
3. Don't even know structure!

## Parameter Estimation and Bayesian Networks



We have:

| $\mathbf{E}$ | $\mathbf{B}$ | $\mathbf{R}$ | $\mathbf{A}$ | $\mathbf{J}$ | $\mathbf{M}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | F | T | T | F | T |
| F | F | F | F | F | T |
| F | T | F | T | T | T |
| F | F | F | T | T | T |
| F | T | F | F | F | F |
| $\ldots$ |  |  |  |  |  |

- Bayes Net structure and observations - We need: Bayes Net parameters


## Parameter Estimation and Bayesian Networks <br>  <br> $$
\begin{array}{ll} P(B)=? & =0.4 \\ P(\neg B)=1-P(B) & =0.6 \end{array}
$$

Parameter Estimation and Bayesian Networks


| $\mathbf{E}$ | $\mathbf{B}$ |
| :---: | :---: |
| T | F |
| F | F |
| F | T |
| F | F |
| F | T |
| $\ldots$ |  |


| $\boldsymbol{A}$ |
| :---: |
| T |
| F |
| T |
| T |
| F |
|  |

## Parameter Estimation and Bayesian

 Networks
$P(A \mid E, B)=$ ?
$\mathrm{P}(\mathrm{A} \mid \mathrm{E}, \neg \mathrm{B})=1.0$ ?
$\mathrm{P}(\mathrm{A} \mid \neg \mathrm{E}, \mathrm{B})=$ ?
$P(A \mid \neg E, \neg B)=?$


## Parameter Estimation and Bayesian Networks

## Coin Flip



## Which coin will I use?

$$
P\left(C_{1}\right)=I / 3 \quad P\left(C_{2}\right)=I / 3 \quad P\left(C_{3}\right)=I / 3
$$

Prior: Probability of a hypothesis before we make any observations

## Coin Flip



## Which coin will I use?

$$
P\left(C_{1}\right)=I / 3 \quad P\left(C_{2}\right)=I / 3 \quad P\left(C_{3}\right)=I / 3
$$

Uniform Prior:All hypothesis are equally likely before we make any observations

## Experiment 1: Heads

## Which coin did I use?



## Experiment 1: Heads

## Which coin did I use?

$$
P\left(C_{1} \mid H\right)=0.066 \quad P\left(C_{2} \mid H\right)=0.333 \quad P\left(C_{3} \mid H\right)=0.6
$$

Posterior: Probability of a hypothesis given data


## Using Prior Knowledge

- Should we always use a Uniform Prior?
- Background knowledge:

Heads => we have to buy Dan chocolate
Dan likes chocolate...
=> Dan is more likely to use a coin biased in his favor

$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$
$\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$

## Using Background Knowledge

## We can encode it in the prior:

| $\mathrm{P}\left(\mathrm{C}_{1}\right)=0.05$ | $\mathrm{P}\left(\mathrm{C}_{2}\right)=0.25$ | $\mathrm{P}\left(\mathrm{C}_{3}\right)=0.70$ |
| :---: | :---: | :---: |
| $\mathrm{C}_{1}$ | $\mathrm{C}_{2}$ | $\mathrm{C}_{3}$ |
| $\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{1}\right)=0.1$ | $\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{2}\right)=0.5$ | $\mathrm{P}\left(\mathrm{H} \mid \mathrm{C}_{3}\right)=0.9$ |

## Experiment 1: Heads Which coin did I use?

$$
P\left(C_{1} \mid H\right)=0.006 \quad P\left(C_{2} \mid H\right)=0.165 \quad P\left(C_{3} \mid H\right)=0.829
$$

Compare with ML posterior after Exp I:
$P\left(C_{1} \mid H\right)=0.066 \quad P\left(C_{2} \mid H\right)=0.333 \quad P\left(C_{3} \mid H\right)=0.600$


$$
\begin{array}{rlr}
P\left(H \mid C_{1}\right)=0.1 & P\left(H \mid C_{2}\right)=0.5 & P\left(H \mid C_{3}\right)=0.9 \\
P\left(C_{1}\right)=0.05 & P\left(C_{2}\right)=0.25 & P\left(C_{3}\right)=0.70
\end{array}
$$

## Probabilistic Estimation



## Bayesian Learning



Or equivalently: $\mathrm{P}(\mathrm{Y} \mid \mathbf{X}) \propto \mathrm{P}(\mathbf{X} \mid \mathrm{Y}) \mathrm{P}(\mathrm{Y})$

Really? Only 3 Coins?


More Likely....


## What Prior to Use?

- Two common priors for continuous variables
- Binary variable Beta
- Posterior distribution is binomial
- Easy to compute posterior
- Easy to compute MAP estimate
- MAP E[Beta(a, b)] = a/(a+b)

- Discrete variable Dirichlet
- Posterior distribution is multinomial
- Easy to compute posterior



## Estimation: Laplace Smoothing

- Laplace's estimate:
pretend you saw every outcome once more than you actually did

$$
\begin{aligned}
P_{L A P}(x) & =\frac{c(x)+1}{\sum_{x}[c(x)+1]} \\
& =\frac{c(x)+1}{N+|X|}
\end{aligned}
$$

$$
\begin{aligned}
\mathrm{P}_{\mathrm{LAP}}(\mathrm{H}) & =(2+1) /(3+2) \\
& =3 / 5
\end{aligned}
$$

Another name for computing the MAP estimate with Dirichlet priors (Bayesian justification)


## Did Learning Work Well?



| $\mathbf{E}$ | $\mathbf{B}$ | $\mathbf{R}$ | $\mathbf{A}$ | $\mathbf{J}$ | $\mathbf{M}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | F | T | T | F | T |
| F | F | F | F | F | T |
| F | T | F | T | T | T |
| F | F | F | T | T | T |
| F | T | F | F | F | F |
| $\ldots$ |  |  |  |  |  |

Can easily calculate
P(data) for learned parameters

## Topics

- Another Useful Bayes Net
- Hybrid Discrete / Continuous
- Learning Parameters for a Bayesian Network
- Fully observable
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks


## Why Learn Hidden Variables?



## How Learn Hidden Variables?



## Chicken \& Egg Problem

- If we knew whether patient had disease
- It would be easy to learn CPTs
- But we can't observe states, so we don't!

- If we knew CPTs
- It would be easy to predict if patient had disease
- But we don't, so we can't!

Face It...



## Continuous Variables



## Learning with Continuous Variables



$$
\begin{aligned}
\widehat{\mu}_{M L E} & =\frac{1}{N} \sum_{i=1}^{N} x_{i} \\
\widehat{\sigma}_{M L E}^{2} & =\frac{1}{N} \sum_{i=1}^{N}\left(x_{i}-\widehat{\mu}\right)^{2}
\end{aligned}
$$

## Continuous Variables



## Simplest Version

- Mixture of two distributions

- Know: form of distribution \& variance,

$$
\sigma=.5
$$

- Just need mean of each distribution


## Input Looks Like



## We Want to Predict



## Chicken \& Egg

Note that coloring instances would be easy if we knew Gausians....


## Chicken \& Egg

And finding Gausian parameters would be easy If we knew the coloring


## Expectation Maximization (EM)

- Pretend we do know the parameters
- Initialize randomly: set $\theta_{1}=$ ?; $\quad \theta_{2}=$ ?



## Expectation Maximization (EM)

- Pretend we do know the parameters - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable



## Expectation Maximization (EM)

- Pretend we do know the parameters - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable



## Expectation Maximization (EM)

- Pretend we do know the parameters - Initialize randomly
- [E step] Compute probability of instance having each possible value of the hidden variable
[M step] Treating each instance as fractionally having both values compute the new parameter values



## ML Mean of Single Gaussian

$$
\mathrm{U}_{\mathrm{ml}}=\operatorname{argmin}_{\mathrm{u}} \sum_{\mathrm{i}}\left(\mathrm{x}_{\mathrm{i}}-\mathrm{u}\right)^{2}
$$



| .01 | .03 | .07 |
| :--- | :--- | :--- | :--- | :--- |

## Expectation Maximization (EM)

[M step] Treating each instance as fractionally having both values compute the new parameter values


## Expectation Maximization (EM)

- [E step] Compute probability of instance having each possible value of the hidden variable


## Expectation Maximization (EM)

- [E step] Compute probability of instance having each possible value of the hidden variable
[M step] Treating each instance as fractionally having both values compute the new parameter values



## Expectation Maximization (EM)

- [E step] Compute probability of instance having each possible value of the hidden variable
[M step] Treating each instance as fractionally having both values compute the new parameter values



## Topics

- Another Useful Bayes Net
- Hybrid Discrete / Continuous
- Learning Parameters for a Bayesian Network
- Fully observable
- Maximum Likelihood (ML),
- Maximum A Posteriori (MAP)
- Hidden variables (EM algorithm)
- Learning Structure of Bayesian Networks


## What if we don't know structure?

## Learning The Structure of Bayesian Networks

| $\mathbf{E}$ | $\mathbf{B}$ | $\mathbf{R}$ | $\mathbf{A}$ | $\mathbf{J}$ | $\mathbf{M}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | F | T | T | F | T |
| F | F | F | F | F | T |
| F | T | F | T | T | T |
| F | F | F | T | T | T |
| F | T | F | F | F | F |
| $\ldots$ |  |  |  |  |  |



## Learning The Structure of Bayesian Networks

| $\mathbf{E}$ | $\mathbf{B}$ | $\mathbf{R}$ | $\mathbf{A}$ | $\mathbf{J}$ | $\mathbf{M}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| T | F | T | T | F | T |
| F | F | F | F | F | T |
| F | T | F | T | T | T |
| F | F | F | T | T | T |
| F | T | F | F | F | F |
| $\ldots$ |  |  |  |  |  |



## Learning The Structure of Bayesian Networks

- Search thru the space...
- of possible network structures!
- For each structure, learn parameters
- As just shown...
- Pick the one that fits observed data best
- Calculate P(data)


Two problems:

- Fully connected will be most probable
- Exponential number of structures


## Learning The Structure of Bayesian Networks

- Search thru the space...
- of possible network structures!
- For each structure, learn parameters
- As just shown...
- Pick the one that fits observed data best
- Calculate P(data)

Two problems:

- Fully connected will be most probable
- Add penalty term (regularization) $\propto$ model complexity
- Exponential number of structures
- Local search


## Overfitting



Can represent strictly more P distributions
Can represent NOISE in training data

## Augment Score Function

- Bayesian Information Criterion (BIC)
- P(D | BN) - penalty
- Penalty = $\alpha$ complexity
- 

$$
=\alpha[1 / 2 \text { (\# parameters) Log (\# data points)] }
$$

Instance of "regularization"
Solves problem of "overfitting"


## Tuning on Held-Out Data

- Now we've got two kinds of unknowns
- Parameters: the probabilities $\mathrm{P}(\mathrm{Y} \mid \mathrm{X}), \mathrm{P}(\mathrm{Y})$
- Hyperparameters, like
- the amount of smoothing to do: $k$, or
- regularization penalty, $\alpha$
- Where to learn?
- Learn parameters from training data
- Must tune hyperparameters on different data
- Why?

$\alpha$
- For each value of the hyperparameters, train and test on the held-out data
- Choose the best value and do a final test on the test data


## Baselines

- First step: get a baseline
- Baselines are very simple "straw man" procedures
- Help determine how hard the task is
- Help know what a "good" accuracy is
- Weak baseline: most frequent label classifier
- Gives all test instances whatever label was most common in the training set
- E.g. for spam filtering, might label everything as ham
- Accuracy might be very high if the problem is skewed
- E.g. calling everything "spam" gets $86 \%$, so a classifier that gets $90 \%$ isn't very good...
- For real research, usually use previous work as a (strong) baseline

