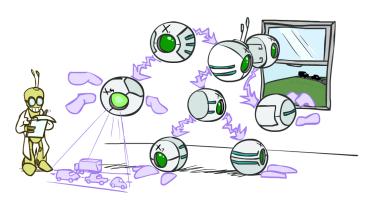
CSE 473: Artificial Intelligence

Bayes' Nets: Inference



Dan Weld

[These slides were created by Dan Klein and Pieter Abbeel for CS188 Intro to Al at UC Berkeley. All CS188 materials are available at http://ai.berkeley.edu.]

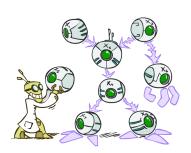
Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1 \ldots a_n)$$

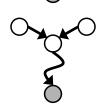
- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$



Active / Inactive Paths

- Question: Are X and Y conditionally independent given evidence variables {Z}?
 - Yes, if X and Y "d-separated" by Z
- Consider all (undirected) paths from X to Y...
- If *all* paths are inactive → independence!
- A path is active if every triple is active:
 - Causal chain $A \rightarrow B \rightarrow C$ where B is unobserved (either direction)
 - Common cause $A \leftarrow B \rightarrow C$ where B is unobserved
 - Common effect (aka v-structure) $A \rightarrow B \leftarrow C$ where B or one of its descendants is observed
- All it takes to block a path is a single inactive segment
 - But every path must be blocked



Inactive Triples

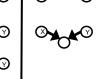
Example

- Variables:
 - R: Raining
 - T: Traffic
 - D: Roof drips
 - S: I'm sad
- Questions:

 $T \perp \!\!\! \perp D$

 $T \bot\!\!\!\!\bot D | R$

Active Triples Inactive Triples



Yes, Independent

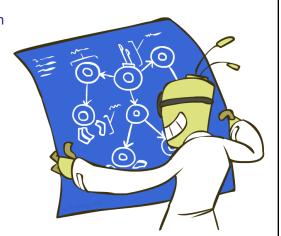
No

Structure Implications

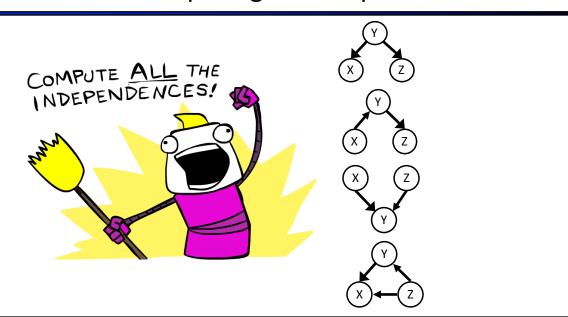
 Given a Bayes net structure, can run d-separation algorithm to build a complete list of conditional independences that are necessarily true of the form

$$X_i \perp \!\!\! \perp X_j | \{X_{k_1}, ..., X_{k_n}\}$$

 This list determines the set of probability distributions that can be represented

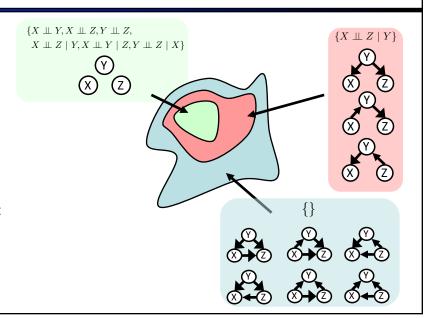


Computing All Independences



Topology Limits Distributions

- Given some graph topology
 G, only certain joint
 distributions can be encoded
- The graph structure guarantees certain (conditional) independences
- (There might be more independence)
- Adding arcs increases the set of distributions, but has several costs
- Full conditioning can encode any distribution

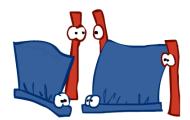


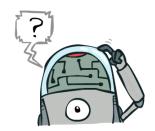
Bayes' Nets

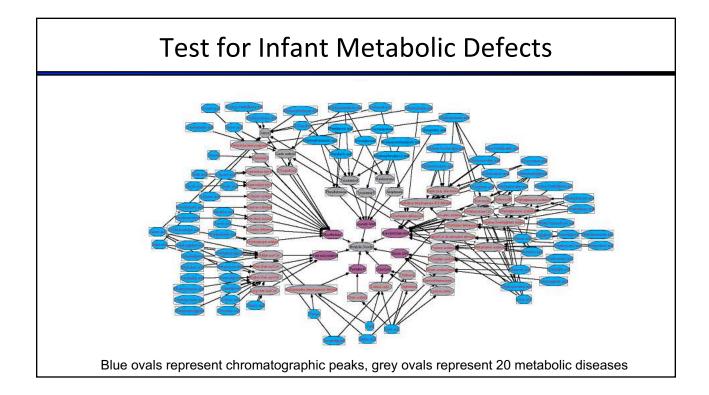
- Representation
- **✓** Conditional Independences
 - Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - Variable elimination (exact, worst-case exponential complexity, often better)
 - Probabilistic inference is NP-complete
 - Sampling (approximate)
 - Learning Bayes' Nets from Data

Inference

- Inference: calculating some useful quantity from a joint probability distribution
- Examples:
 - lacktriangledown Posterior probability $P(Q|E_1=e_1,\dots E_k=e_k)$
 - Most likely explanation: $\operatorname{argmax}_q \, P(Q=q|E_1=e_1\ldots)$





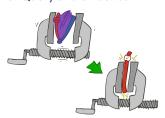


Inference by Enumeration

General case:

0.05 0.25 0.07 0.2

- $E_1 \dots E_k = e_1 \dots e_k$ Q $H_1 \dots H_r$ All variablesEvidence variables: Query* variable: Hidden variables:
 - Step 1: Select the Step 2: Sum out H to get joint of Query and evidence entries consistent with the evidence



 $P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k})$ $X_1, X_2, \dots X_n$ $P(Q|e_1 \dots e_k) = \frac{1}{Z} P(Q, e_1 \dots e_k)$

* Works fine with We want: multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$

$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Μ

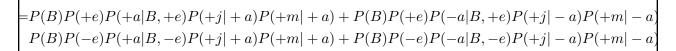
Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

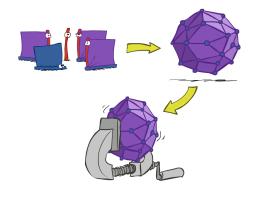
$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

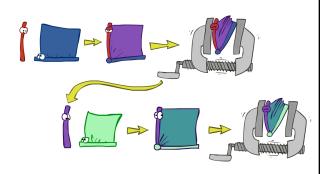


Inference by Enumeration vs. Variable Elimination

- Why is inference by enumeration so slow?
 - You join up the whole joint distribution before you sum out the hidden variables



- Idea: interleave joining and marginalizing!
 - Called "Variable Elimination"
 - Still NP-hard, but usually much faster than inference by enumeration



• First we'll need some new notation: factors

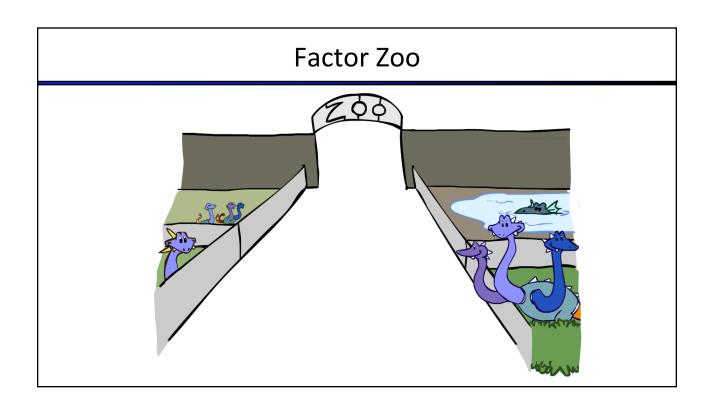
Traffic Domain

$$P(L) = ?$$

Inference by Enumeration

Variable Elimination

$$= \sum_t P(L|t) \sum_r P(r) P(t|r)$$
 Join on r Eliminate r Join on t



Factor Zoo I

- Joint distribution: P(X,Y)
 - Entries P(x,y) for all x, y
 - Sums to 1
- Selected joint: P(x,Y)
 - A slice of the joint distribution
 - Entries P(x,y) for fixed x, all y
 - Sums to P(x)

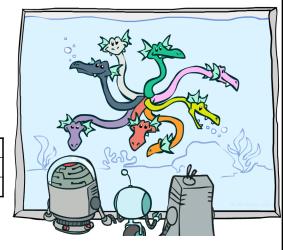
Number of capitals = dimensionality of the table

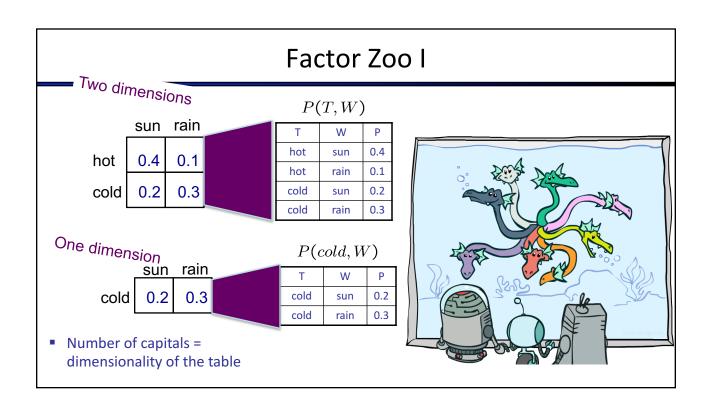
P(T, W)

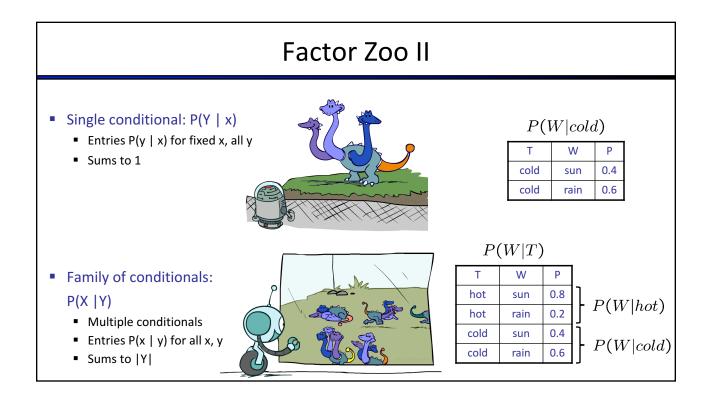
Т	W	Р
hot	sun	0.4
hot	rain	0.1
cold	sun	0.2
cold	rain	0.3

P(cold, W)

Т	W	Р
cold	sun	0.2
cold	rain	0.3





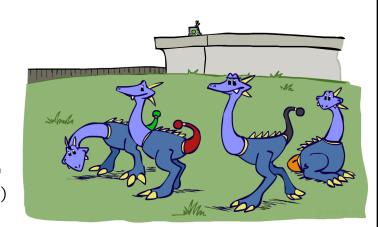


Factor Zoo III

- Specified family: P(y | X)
 - Entries P(y | x) for fixed y, but for all x
 - Sums to ... who knows!

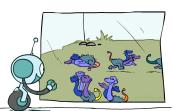
P(rain|T)

Т	W	Р	
hot	rain	0.2	P(rain hot)
cold	rain	0.6	P(rain cold)
			•



Factor Zoo Summary

- In general, when we write $P(Y_1 ... Y_N \mid X_1 ... X_M)$
 - It is a "factor," a multi-dimensional array
 - Its values are P(y₁ ... y_N | x₁ ... x_M)
 - Any assigned (=lower-case) X or Y is a dimension missing (selected) from the array



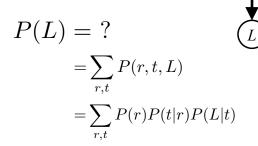
Example: Traffic Domain

Random Variables

R: Raining

■ T: Traffic

L: Late for class!



	P(R)	
	+r	0.1
?)	-r	0.9

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

P(L T)			
+t	+	0.3	
+t	-1	0.7	
-t	+	0.1	
-t	-1	0.9	

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)		
+r	0.1	
-r	0.9	

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

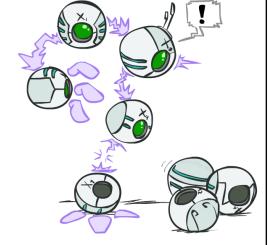
$$\begin{array}{c|cccc} P(L|T) \\ \hline +t & +l & 0.3 \\ +t & -l & 0.7 \\ -t & +l & 0.1 \\ -t & -l & 0.9 \\ \end{array}$$

- Any known values are selected
 - E.g. if we know $L=+\ell$, the initial factors are

P(R)		
+r	0.1	
-r	0.9	

P(T R)			
+r	+t	0.8	
+r	-t	0.2	
-r	+t	0.1	
-r	-t	0.9	

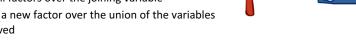
$$P(+\ell|T)$$
+t +I 0.3
-t +I 0.1

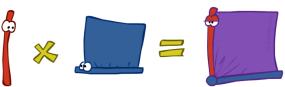


Procedure: Join all factors, then eliminate all hidden variables

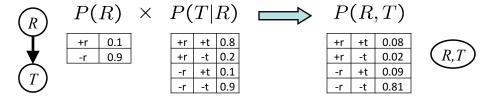
Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved



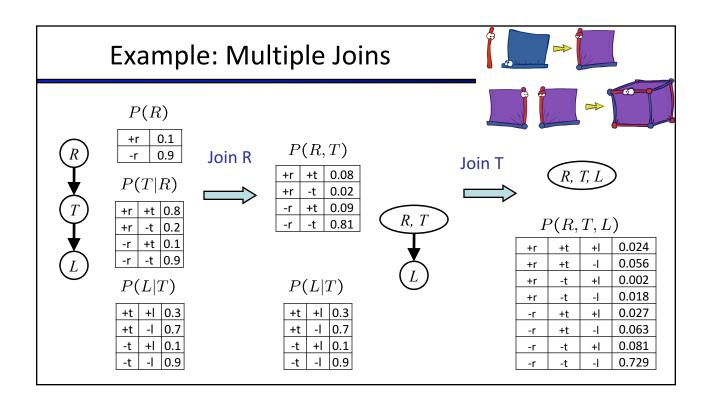


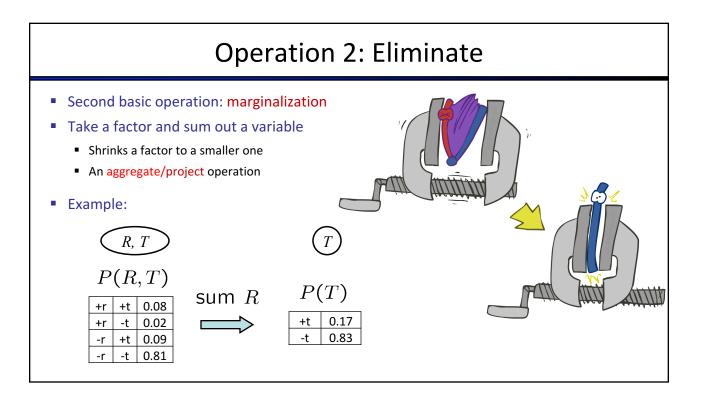
Example: Join on R

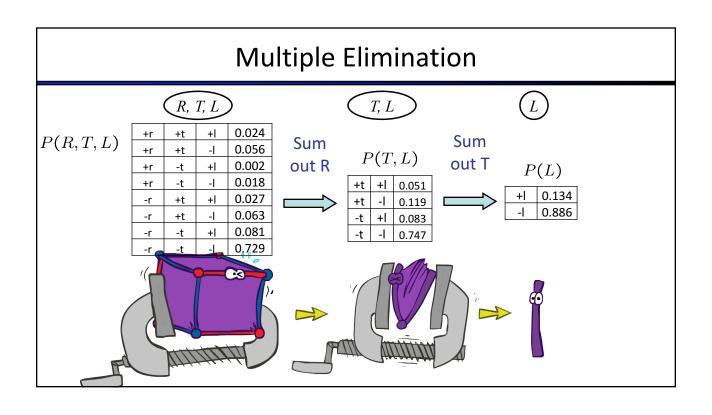


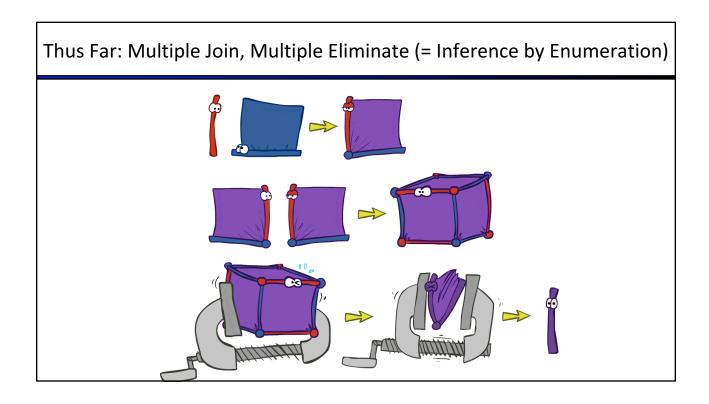
 $P(r,t) = P(r) \cdot P(t|r)$ $\forall r, t$: Computation for each entry: pointwise products

Example: Multiple Joins

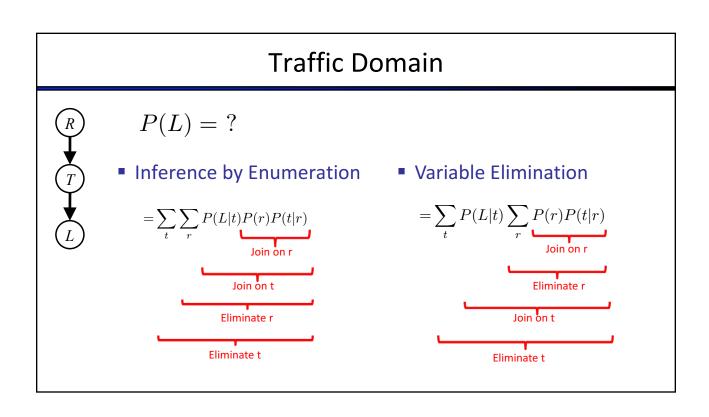


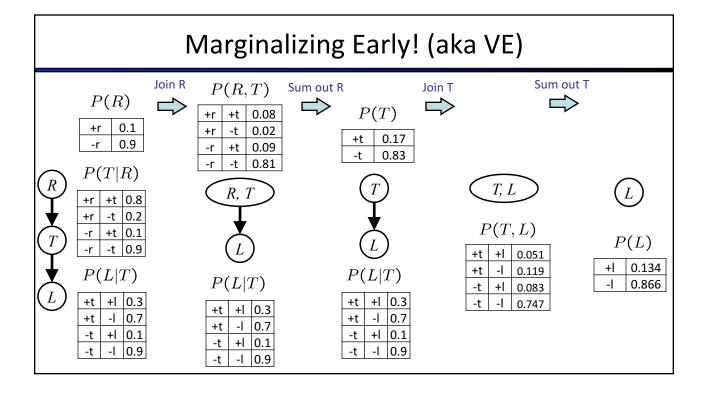






Marginalizing Early (= Variable Elimination)





Evidence

- If evidence, start with factors that select that evidence
 - If there is no evidence, then use these initial factors:

$$P(R)$$
+r 0.1
-r 0.9

$$P(T|R)$$
+r +t 0.8
+r -t 0.2
-r +t 0.1
-r -t 0.9

$$P(L|T)$$

+t +l 0.3
+t -l 0.7
-t +l 0.1
-t -l 0.9

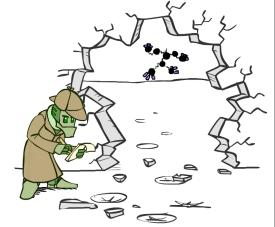
- But if given some evidence, eg +r, then select for it...
- Computing P(L|+r) the initial factors become:

$$P(+r)$$

$$P(T|+r)$$

$$\begin{array}{c|ccc} +r & +t & 0.8 \\ \hline +r & -t & 0.2 \end{array}$$

$$\begin{array}{c|cccc} P(L|T) \\ \hline +t & +l & 0.3 \\ +t & -l & 0.7 \\ -t & +l & 0.1 \\ -t & -l & 0.9 \\ \end{array}$$



Next do joins & eliminate, removing all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

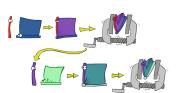
P(+r, L) | +r | +l | 0.026 | +r | -l | 0.074

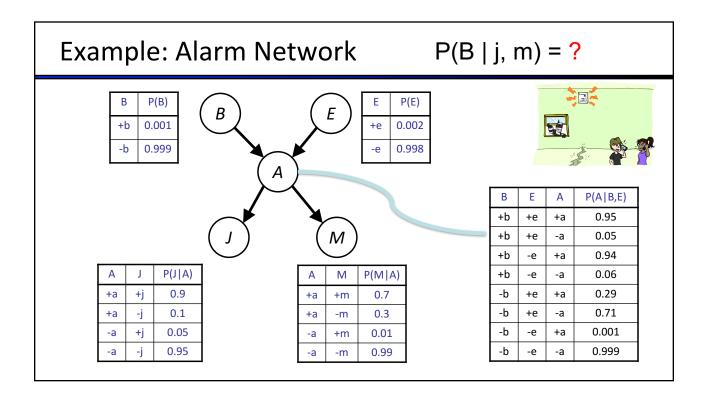
Normalize

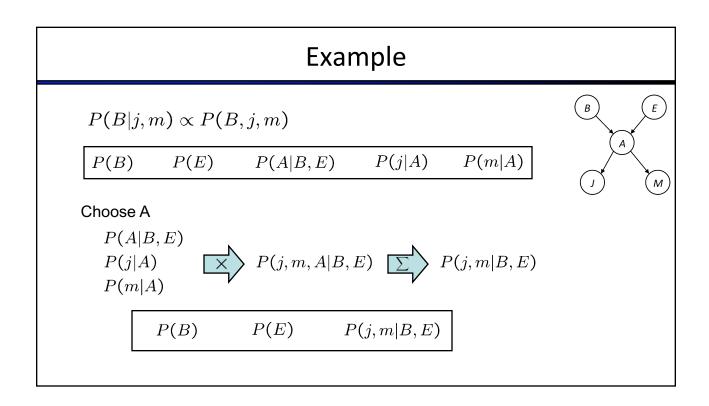
- To get our answer, just normalize this!
- That 's it!

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Choose a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

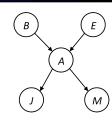






Example

P(E)



Choose E

P(j,m|B,E)

$$\square$$

P(B)

Finish with B

$$P(B)$$

$$P(j,m|B)$$

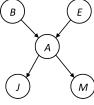
Same Example in Equations

 $P(B|j,m) \propto P(B,j,m)$

P(E)

P(A|B,E) P(j|A)

P(m|A)



 $P(B|j,m) \propto P(B,j,m)$

$$= \sum_{e,a} P(B,j,m,e,a)$$

 $= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$

 $= \sum_{e} P(B)P(e) \sum_{a} P(a|B,e)P(j|a)P(m|a)$

 $= \sum_{e} P(B)P(e)f_1(B, e, j, m)$

 $= P(B) \sum_{e} P(e) f_1(B, e, j, m)$

marginal can be obtained from joint by summing out

use Bayes' net joint distribution expression

use $xy + xz = x^*(y+z)$ do sum first

joining on a, and then summing out gives f₁

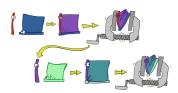
use $xy + xz = x^*(y+z)$ do sum first

joining on e, and then summing out gives f₂

Simple! Exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy + vxz = (u+v)(w+x)(y+z) to reduce computation

Choices during Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Choose a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

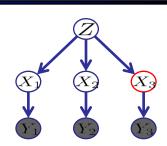


Another Variable Elimination Example

Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Start by inserting evidence, which gives the following initial factors:

 $p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$



What variables could we eliminate?

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3) \\$$

Eliminate X_1 , this introduces the factor $\underline{f_1(Z,y_1)} = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z, y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $\underline{f_2(Z,y_2)} = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z, y_1)\underline{f_2(Z, y_2)}p(X_3|Z)p(y_3|X_3)$$

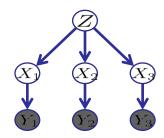
Eliminate Z, this introduces the factor $\underbrace{f_3(y_1,y_2,X_3)}_{} = \sum_z p(z) f_1(z,y_1) f_2(z,y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.



What dimension are f_1 , $f_2 \& f_3$?

Another Variable Elimination Example

Query: $P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$

Start by inserting evidence, which gives the following initial factors:

 $p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$

Alternatively, suppose we start by eliminating Z:

 $P(X_1 \mid Z)$

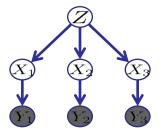
 $P(X_2 \mid Z)$

 $p(y_1 | X_1)$

 $P(X_3 \mid Z)$

 $p(y_2|X_2)$

 $p(y_3 | X_3)$



What is the resulting factor?

What dimension is it? 3

How many entries? k³

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_1 , this introduces the factor $\underline{f_1(Z,y_1)} = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z, y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $\underline{f_2(Z,y_2)} = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z, y_1)\underline{f_2(Z, y_2)}p(X_3|Z)p(y_3|X_3)$$

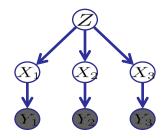
Eliminate Z, this introduces the factor $\underline{f_3(y_1,y_2,X_3)} = \sum_z p(z) f_1(z,y_1) f_2(z,y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.

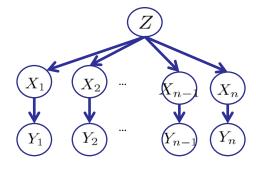


Computational complexity depends on the *largest factor* generated by the process.

Size of factor = number of entries in table.

Variable Elimination Ordering

For the query $P(X_n|y_1,...,y_n)$ work through the following two different orderings as done in previous slide: Z, X_1 , ..., X_{n-1} and X_1 , ..., X_{n-1} , Z. What is the size of the maximum factor generated for each of the orderings?



- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Does there always exist an ordering that only results in small factors?
 - No!

Worst Case Complexity?

CSP:

 $(x_1 \lor x_2 \lor \neg x_3) \land (\neg x_1 \lor x_3 \lor \neg x_4) \land (x_2 \lor \neg x_2 \lor x_4) \land (\neg x_3 \lor \neg x_4 \lor \neg x_5) \land (x_2 \lor x_5 \lor x_7) \land (x_4 \lor x_5 \lor x_6) \land (\neg x_5 \lor x_6 \lor \neg x_7) \land (\neg x_5 \lor \neg x_6 \lor x_7)$

$$P(X_i = 0) = P(X_i = 1) = 0.5$$

$$Y_1 = X_1 \vee X_2 \vee \neg X_3$$

$$Y_8 = \neg X_5 \lor X_6 \lor X_7$$

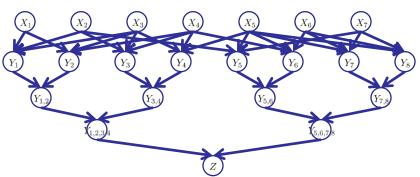
$$Y_{1,2} = Y_1 \wedge Y_2$$

$$Y_{7,8} = Y_7 \wedge Y_8$$

$$Y_{1,2,3,4} = Y_{1,2} \wedge Y_{3,4}$$

$$Y_{5,6,7,8} = Y_{5,6} \wedge Y_{7,8}$$

$$Z = Y_{1,2,3,4} \wedge Y_{5,6,7,8}$$



- If we can answer P(z) equal to zero or not, we answered whether the 3-SAT problem has a solution.
- Hence inference in Bayes' nets is NP-hard. No known efficient probabilistic inference in general.

Polytrees

- A polytree is a directed graph with no undirected cycles
- For poly-trees you can always find an ordering that is efficient
 - Try it!!
- Cut-set conditioning for Bayes' net inference
 - Choose set of variables such that if removed only a polytree remains
 - Exercise: Think about how the specifics would work out!

Bayes' Nets

- Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - ✓ Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓ Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data