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CSE	473:	Artificial	Intelligence

Bayes’	Nets:			D-Separation

Daniel	Weld
[Most	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Bayes’ Nets:	Big	Picture

§ Two	problems	with	using	full	joint	distribution	tables	
as	our	probabilistic	models:
§ Unless	there	are	only	a	few	variables,	the	joint	is	WAY	too	

big	to	represent	explicitly
§ Hard	to	learn	(estimate)	anything	empirically	about	more	

than	a	few	variables	at	a	time

§ Bayes’ nets:	a	technique	for	describing	complex	joint	
distributions	(models)	using	simple,	local	
distributions	(conditional	probabilities)
§ More	properly	… aka	probabilistic	graphical	model
§ We	describe	how	variables	locally	interact
§ Local	interactions	chain	together	to	give	global,	indirect	

interactions
§ For	about	10	min,	we’ll be	vague	about	how	these	

interactions	are	specified
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Bayes’ Net	Semantics

§ A	set	of	nodes,	one	per	variable	X

§ A	directed,	acyclic graph

§ A	conditional	distribution	for	each	node

§ A	collection	of	distributions	over	X,	one	for	each	
combination	of	parents’ values

§ CPT:	conditional	probability	table

§ Description	of	a	noisy	“causal” process

A1

X

An

A	Bayes	net	=	Topology	(graph)	+	Local	Conditional	Probabilities

P(A1 )  ….     P(An )

Example:	Alarm	Network

Burglary Earthqk

Alarm

John	
calls

Mary	
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99
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Example:	Alarm	Network
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ

What’s	Next	with	Bayes’	Nets

Questions	we	can	ask:

§ Definition:		P(X	=	x)

§ Representation:	given	a	BN	graph,	what	kinds	of	distributions	can	it	encode?

§ Modeling:	what	BN	is	most	appropriate	for	a	given	domain?

§ Inference:	given	a	fixed	BN,	what	is	P(X	|	e)?

§ Learning:	Given	data,	what	is	best	BN	encoding?



4

Remember….

§ X,	Y	independent	
if	and	only	if:

§ X	and	Y	are	conditionally	independent	given	Z:																										
if	and	only	if:

Conditional	Independence	in	a	BN
Important	question	about	a	BN:

§ Are	two	nodes	independent	given	certain	evidence?
§ If	yes,	must	prove	using	algebra	(tedious	in	general)
§ If	no,	can	prove	with	a	counter	example	(including	CPTs)
§ For	example:

§ Question	1:	are	X	and	Z	necessarily independent?
§ Answer:	NO.		Example:	low	pressure	causes	rain,	which	causes	traffic.
§ Information	about	X	may	change	our	belief	in	Z	(via	Y)
§ Similarly,	info	about	Z	may	change	our	belief	in	X

X Y Z

P(Y|X)   = 1
P(Y|#X) = 1

P(Z|Y)   = .5
P(Z|#Y) = .5

P(X)   = .9
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Conditional	Independence	in	a	BN
§ Important	question	about	a	BN:

§ Are	two	nodes	independent	given	certain	evidence?
§ If	yes,	can	prove	using	algebra	(tedious	in	general)
§ If	no,	can	prove	with	a	counter	example
§ For	example:

§ Question	1:	are	X	and	Z	necessarily independent?
§ Answer:	no.	

§ Question	2:	are	X	and	Z	conditionally	independent,	given	Y?
§ Answer:	yes,	as	we’ll	see

X Y Z

D-separation
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D-separation:	Outline

§ Study	independence	properties	for	subgraphs
(connected	triples)

§ Analyze	complex	cases	in	terms	of	triples	along	paths	between	vars

§ D-separation:	a	condition	/	algorithm	for	answering	such	queries

Causal	Chains

§ This	configuration	is	a	“causal	chain” § Guaranteed	X	independent	of	Z	given	Y?

§ Evidence	along	the	chain	“blocks” the	
influence	(makes	“inactive”)

Yes!

X:	Low	pressure										Y:	Rain																										Z:	Traffic



7

Common	Cause

§ This	configuration	is	a	“common	cause” § Guaranteed	X	and	Z	independent	given	Y?

§ Observing	the	cause	blocks	influence	
between	effects.	(makes	inactive)

Yes!

Y:	Project	
due

X:	Forums	
busy Z:	Lab	full

Common	Effect
§ Last	configuration:	two	causes	of	one	

effect	(v-structures)

Z:	Traffic

§ Are	X	and	Y	independent?

§ Yes:	the	ballgame	and	the	rain	cause	traffic,	but	
they	are	not	correlated

§ Still	need	to	prove	they	must	be	(try	it!)

§ Are	X	and	Y	independent	given	Z?

§ No:	seeing	traffic	puts	the	rain	and	the	ballgame	in	
competition	as	explanation.

§ This	is	backwards from	the	other	cases

§ Observing	an	effect	activates	influence	between	
possible	causes.	(makes	active!)

X:	Raining Y:	Ballgame
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Common	Effect

Z:	Traffic

X:	Raining Y:	Ballgame

P(X) = 0.8 P(Y) = 0.1

X Y P(Z)
T T 0.95
T F 0.8
F T 0.9
F F 0.5

X Y Z P

T T T 0.076
T T F 0.004
T F T 0.576
T F F 0.144
F T T 0.162
F T F 0.002
F F T 0.090
F F F 0.009

Common	Effect

Z:	Traffic

X:	Raining Y:	Ballgame

P(X) = 0.8 P(Y) = 0.1

X Y P(Z)
T T 0.95
T F 0.8
F T 0.9
F F 0.5

X Y Z P

T T T 0.076
T T F 0.004
T F T 0.576
T F F 0.144
F T T 0.162
F T F 0.002
F F T 0.090
F F F 0.009
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Common	Effect

Z:	Traffic

X:	Raining Y:	Ballgame

P(X) = 0.8 P(Y) = 0.1

X Y P(Z)
T T 0.95
T F 0.8
F T 0.9
F F 0.5

X Y Z P

T T T 0.076
T T F 0.004
T F T 0.576
T F F 0.144
F T T 0.018
F T F 0.002
F F T 0.090
F F F 0.009

P(X|Y) =

=  0.08 / 0.1
=   0.8

0.076+0.004

0.076+0.004+0.018+0.002

But	Suppose	Also	Know	Z=T

Z:	Traffic

X:	Raining Y:	Ballgame

P(X) = 0.8 P(Y) = 0.1

X Y P(Z)
T T 0.95
T F 0.8
F T 0.9
F F 0.5

X Y Z P

T T T 0.076
T T F 0.004
T F T 0.576
T F F 0.144
F T T 0.018
F T F 0.002
F F T 0.090
F F F 0.009

P(X|Y,Z) =

=  0.8085

0.076

0.076+ 0.018

P(X|Z) = .076+.576 
.076+.576+.018+.090

= 0.652/0.76
= 0.858
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The	General	Case

The	General	Case

§ General	question:	in	a	given	BN,	are	two	variables	independent	
(given	evidence)?

§ Solution:	analyze	the	graph

§ Any	complex	example	can	be	broken
into	repetitions	of	the	three	canonical	cases
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§ Query:

§ Check	all	(undirected!)	paths	between								and	
§ If	one	or	more	paths	is	active,	then	independence	not	guaranteed

§ Otherwise	(i.e.	if	all	paths	are	inactive),
then	“D-separated”	=	independence	is guaranteed

D-Separation

Xi �� Xj |{Xk1 , ..., Xkn}

Xi �� Xj |{Xk1 , ..., Xkn}

?

Xi �� Xj |{Xk1 , ..., Xkn}

§ Query:		

Example

X BR T
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Active	/	Inactive	Paths

§ Question:	Are	X	and	Y	conditionally	independent	given	
evidence	variables	{Z}?
§ Yes,	if	X	and	Y	“d-separated” by	Z
§ Consider	all	(undirected)	paths	from	X	to	Y
§ If	no	path	is	active	à independence!

§ A	path is	active	if	every	triple	in	path	is	active:
§ Causal	chain	A	® B	® C	where	B	is	unobserved	(either	direction)
§ Common	cause	A	¬ B	® C	where	B	is	unobserved
§ Common	effect	(aka	v-structure)

A	® B	¬ C	where	B	or	one	of	its	descendants is	observed

§ All	it	takes	to	block	a	path	is	a	single inactive	segment
§ (But	all paths	must	be	inactive)

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Example

Yes,	Independent! R

T

B

T’

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y
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Example

Yes,	Independent! R

T

B

T’

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

No

Example

Yes,	Independent! R

T

B

T’

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

No

No
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Example

R

T

B

D

L

T’

Yes,	Independent

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Example

R

T

B

D

L

T’

Yes,	Independent

Yes,	Independent

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y
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Example

R

T

B

D

L

T’

Yes,	Independent

Yes,	Independent

No

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Example

R

T

B

D

L

T’

Yes,	Independent

Yes,	Independent

No

No

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y
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Example

R

T

B

D

L

T’

Yes,	Independent

Yes,	Independent

Yes,	Independent

No

No

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Example

R

T

B

D

L

T’

Yes,	Independent

Yes,	Independent

Yes,	Independent

No

No

No

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

R      T’ | L, B
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Example

§ Variables:
§ R:	Raining
§ T:	Traffic
§ D:	Roof	drips
§ S:	I’m	sad

§ Questions:

T

S

D

R

No

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Example

§ Variables:
§ R:	Raining
§ T:	Traffic
§ D:	Roof	drips
§ S:	I’m	sad

§ Questions:

T

S

D

R

Yes,	Independent

No

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y
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Example

§ Variables:
§ R:	Raining
§ T:	Traffic
§ D:	Roof	drips
§ S:	I’m	sad

§ Questions:

T

S

D

R

Yes,	Independent

No

No

Active	Triples Inactive	Triples

X

X

X

X

X

X

X

Y

Y

Y

Y

Y

Y

Y

Two	Degenerate	Cases

DR

Unconnected à Always Independent 
There are no paths between R and D, so definitely no active paths)
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Two	Degenerate	Cases

D

R

Directly connected à Dependent (for some values of the CPT)

Structure	Implications

§ Given	a	Bayes	net	structure,	can	run	d-separation	
algorithm	to	build	a	complete	list	of	conditional	
independences	that	are	necessarily	true	of	the	
form

§ This	list	determines	the	set	of	probability	
distributions	that	can	be	represented	

Xi �� Xj |{Xk1 , ..., Xkn}
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Computing	All	Independences

X

Y

Z

X

Y

Z

X

Y

Z

X

Y

Z

X
Y

Z

{X �� Y,X �� Z, Y �� Z,

X �� Z | Y,X �� Y | Z, Y �� Z | X}

Topology	Limits	Distributions
§ Given	some	graph	topology	

G,	only	certain	joint	
distributions	can	be	encoded

§ The	graph	structure	
guarantees	certain	
(conditional)	independences

§ (There	might	be	more	
independence)

§ Adding	arcs	increases	the	set	
of	distributions,	but	has	
several	costs

§ Full	conditioning	can	encode	
any	distribution

X

Y

Z

X

Y

Z

X

Y

Z

{X �� Z | Y }

X

Y

Z X

Y

Z X

Y

Z

X

Y

Z X

Y

Z X

Y

Z

{}
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Bayes	Nets	Representation	Summary

§ Bayes	nets	compactly	encode	joint	distributions

§ Guaranteed	independencies	of	distributions	can	be	
deduced	from	BN	graph	structure

§ D-separation	gives	precise	conditional	independence	
guarantees	from	graph	alone

§ A	Bayes’ net’s	joint	distribution	may	have	further	
(conditional)	independence	that	is	not	detectable	until	
you	inspect	its	specific	distribution


