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Bayes’ Nets: Big Picture

= Two problems with using full joint distribution tables
as our probabilistic models:

= Unless there are only a few variables, the joint is WAY too
big to represent explicitly

= Hard to learn (estimate) anything empirically about more
than a few variables at a time

= Bayes’ nets: a technique for describing complex joint
distributions (models) using simple, local
distributions (conditional probabilities)
= More properly ... aka probabilistic graphical model
= We describe how variables locally interact

= Local interactions chain together to give global, indirect
interactions

= For about 10 min, we’ll be vague about how these
interactions are specified
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Bayes’ Net Semantics =i,

= A set of nodes, one per variable X P(4;) ... P(4,)
= A directed, acyclic graph

= A conditional distribution for each node

= A collection of distributions over X, one for each
combination of parents’ values

P(Xlai...an)

.. - P(X|A1---An)
= CPT: conditional probability table

= Description of a noisy “causal” process

A Bayes net = Topology (graph) + Local Conditional Probabilities

Example: Alarm Network

A
B | P(B) we ]
+b | 0.001 —
P(A|B,E)

0.95




B | P(B)
+b | 0.001
-b | 0.999

A | 1| PUIA) °
+a | 4 0.9

+a -j 0.1
P(—I_b’ —€, —|—CL, _ja +m) =

-a | 4| 005
al| | 095

0.001 x 0.998 x 0.94 x 0.1 x 0.7

Example: Alarm Network

E P(E)
+e | 0.002

-e | 0.998

A M | P(M|A)
+a | +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

P(+b)P(—e)P(+al + b,—e)P(—j| + a)P(+m| + a) =

B | E| A | PA|BE)
+b | +e | +a 0.95
+tb | +e | -a 0.05
+tb | -e | +a 0.94
tb | -e | -a 0.06
-b | +e | +a 0.29
b | +te | -a 0.71
-b | -e | +a 0.001
b | -e| -a 0.999

Questions we can ask:

» Definition: P(X =x)

» |nference: given a fixed BN, what is P(X | e)?

= Learning: Given data, what is best BN encoding?

Modeling: what BN is most appropriate for a given domain?

What’s Next with Bayes’ Nets

= Representation: given a BN graph, what kinds of distributions can it encode?




Remember....

= X, Yindependent X1Y|Z

if and only if:
Vz,y : P(x,y) = P(x)P(y)

= X andY are conditionally independent given Z: X1Y|Z
if and only if:

Va,y,z 1 P(x,ylz) = P(z|z)P(y|2)

Conditional Independence in a BN

Important question about a BN:
= Are two nodes independent given certain evidence?
= |f yes, must prove using algebra (tedious in general)
® If no, can prove with a counter example (including CPTs)

= For example: (Y|X) =1 (Z|Y)
PY#X)=1  P(ZJ#Y)

c
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= Question 1: are X and Z necessarily independent?

= Answer: NO. Example: low pressure causes rain, which causes traffic.
= Information about X may change our belief in Z (via Y)
= Similarly, info about Z may change our belief in X
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Conditional Independence in a BN

|- Important question about a BN:

= Are two nodes independent given certain evidence?
= |f yes, can prove using algebra (tedious in general)
= |f no, can prove with a counter example

= For example:

= Question 1: are X and Z necessarily independent?
= Answer: no.

= Question 2: are X and Z conditionally independent, given Y?
= Answer: yes, as we’'ll see

D-separation




D-separation: Outline

= Study independence properties for subgraphs
(connected triples)

= Analyze complex cases in terms of triples along paths between vars

= D-separation: a condition / algorithm for answering such queries

Causal Chains

* This configuration is a “causal chain” » Guaranteed X independent of Z given Y?

() aam et

_ PYPGINP(:y)
PR)P()

X: Low pressure Y: Rain Z: Traffic = P(Z|y)

£
4
§

Yes!

P(e,y,2) = P(e) P(ylz) P(zly) = Evidence along the chain “blocks” the

influence (makes “inactive”)




. . . . ““ ”
= This conflguratlon ISa common cause

Y: Project
Due!
due —

% Z: Lab full

P(z,y,z) = P(y)P(z|y)P(z|y)

X: Forums
busy

Common Cause

= Guaranteed X and Z independent given Y?

P(z,y,2)
P(z,y)

_ PONP(INPCly)
PQPOY)

= P(z|y)

P(z|z,y) =

Yes!

= Observing the cause blocks influence
between effects. (makes inactive)

= |ast configuration: two causes of one
effect (v-structures)

Y: Ballgame

()

X: Raining

Z: Traffic i J/'!

Common Effect

= Are XandY independent?

= Yes: the ballgame and the rain cause traffic, but

they are not correlated

= Still need to prove they must be (try it!)

= Are X and Y independent given Z?

= No: seeing traffic puts the rain and the ballgame in

competition as explanation.

= This is backwards from the other cases

= Observing an effect activates influence between

possible causes. (makes active!)




Common Effect
X | v |z P
P(X)=0.8 P(Y)=10.1 T T|T 0.076
X: Raining Y: Ballgame T T F 0.004
v p T|F|T 0.576
W -ﬁ T|F|F 0.144
FlT | T 0.162
@ @ F | T|F 0.002
FlF | T 0.090
ﬁ'i\l/l Eri FlF|F 0.009
Kz X Y P(Z)
0.0 T T 095
Z: Traffic Y Jf’! T F 0.8
F T 0.9
F F 0.5
Common Effect
X |y |z P
P(X)=0.8 P(Y)=0.1 T T[T 0.076
X: Raining Y: Ballgame T T F 0.004
e p T|F|T 0.576
m ﬁ T | F|F 0.144
FlT|T 0.162
@ @ F|T|F 0.002
FlF|T 0.090
% Eri FlF|F 0.009
Ol Y PQ
G.O T T 095
Z: Traffic Y J/’! T F 0.8
F T 0.9
F F 0.5




Common Effect
x| v |z P
P(X)=0.8 P(Y)=0.1 T|T|T 0.076
X: Raining Y: Ballgame T T F 0.004
v P T|F|T 0.576
W -ﬁ T|F|F 0.144
FlT T 0.018
@ @ FlT|F 0.002
ﬁivl Kg FlF [T 0.090
FlF|F 0.009
Y X Y P(Z)
0.0 T T 0.95 P(X|Y) = 0.076+0.004
7: Traffic I T F 0.8 0.076+0.004+0.018+0.002
el _
F T 0.9 : 00.088/0.1
F F 0.5 S
But Suppose Also Know Z=T
x| v |z P
P(X)=0.8 P(Y)=0.1 e 0.076
X: Raining Y: Ballgame T T F 0.004
e P T|F|T 0.576
m ﬁ P(X|Z) = .076+.576 T F]F] o014
.076+.576+.018+.090 F | T | T 0.018
@ @ =0.652/0.76 FEl T F 0.002
% E‘g =0.858 FlF|T]| o090
FlF|F 0.009
$Z > X Y P(Z)
G.O T T 0.95 P(X|Y,Z) = 0.076
Z: Traffic Y T F 0.8 0.076+ 0.018
el _
F T 0.9 = 0.8085
F F 0.5




The General Case

The General Case

= General question: in a given BN, are two variables independent
(given evidence)?

= Solution: analyze the graph

= Any complex example can be broken

into repetitions of the three canonical cases
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D-Separation

= Query: X, |l Xj‘{Xkl,---an:n} ?

» Check all (undirected!) paths between X; and X

* |f one or more paths is active, then independence not guaranteed

X WX Xy e X, } B

= QOtherwise (i.e. if all paths are inactive), @

then “D-separated” = independence is guaranteed

X; L X {Xpy, oy X, } M@%%@@

Example

= Query: RILB|T

O—O—O—®
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evidence variables {Z}?

» Yes, if Xand Y “d-separated” by Z
= Consider all (undirected) paths from Xto Y
= |f no path is active > independence!

= A path is active if every triple in path is active:
= Common cause A <~ B — C where B is unobserved

= Common effect (aka v-structure)
A — B <« C where B or one of its descendants is observed

= (But all paths must be inactive)

= Question: Are X and Y conditionally independent given

= Causal chain A— B — C where B is unobserved (either direction)

= All it takes to block a path is a single inactive segment

Active / Inactive Paths

Active Triples Inactive Triples

BHOHD | OO
o | F
Hage® | Oge©

Example

R B Yes, Independent! e e

Active Triples Inactive Triples

OPOPO

%
DA p©

~44 23
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Example

Active Triples Inactive Triples

OPOPO

%
@

R1 B Yes, Independent! e e

R B|T  No

(D
©

NARE

Example

Active Triples Inactive Triples

DIONO | OPOID
RUB  Yes independent! (&)  (8) *o | oo
RUB|T No OAAQ | O QO
RALB|T" No G ®’§“®




Example

Active Triples Inactive Triples

OPOPO

POPO
LITT Yes, Independent
Example
Active Triples Inactive Triples
LUT\T Yes, Independent e OHPOFO
Cadeta©
L1 B Yes, Independent

® @
@ @
()

OAp©

~44 23
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Example
Active Triples Inactive Triples
LUT\T Yes, Independent e OO | OO
L1B Yes, Independent © © o | Fo
L1 B|T No OAAQ | O 4@
Example
Active Triples Inactive Triples
LUTT Yes, Independent e APOPO | POXO
L1 B Yes, Independent e e M M
L1 B|T No MAAQ [ DA
LUBIT  No oRG ®=§k®
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Example
Active Triples Inactive Triples
LUT\T Yes, Independent e OO | OO
L1B Yes, Independent © © o | Fo
L1 B|T No OAAQ | O 4@
LUBIT  No oG ®>§k®
LI B|T,R Yes, Independent
Example
Active Triples Inactive Triples
LUTT Yes, Independent Q POPO | OO
L1 B Yes, Independent e e M M
L1 B|T No MAAQ [ DA
L1 B|T’ No @ @ ®=§‘f®
L1 B|T,R Yes, Independent
RI T’|L B No @
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Example

Active Triples Inactive Triples

= Variables:
= R: Raining
= T: Traffic e *o | #o
= D: Roof drips %@ @gOgCD
= S:I'm sad 0 Q
= Questions: g
rup e ©
Example
. . Active Triples Inactive Triples
Variables:
= R: Raining
= T: Traffic e M M
= D: Roof drips ®"O“® ®"O“®
= S: I'm sad G Q
= Questions: g
T1 D No 9
T1 D|R Yes, Independent
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Example

Active Triples Inactive Triples

OPOPO

%
@

= Variables:
= R: Raining
= T: Traffic e
= D: Roof drips

= S:I'msad 0 Q

= Questions:

NARE

T1D No
T D|R Yes, Independent
T1.D|R,S No

Two Degenerate Cases

Unconnected - Always Independent
There are no paths between R and D, so definitely no active paths)

® ®
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Two Degenerate Cases

Directly connected - Dependent (for some values of the CPT)

Structure Implications

= Given a Bayes net structure, can run d-separation
algorithm to build a complete list of conditional
independences that are necessarily true of the
form

X U XiH{ Xk, Xk, }

= This list determines the set of probability
distributions that can be represented

19



Computing All Independences

MPUTE ALL THE
C\'KDEPENDE NCES!

Topology Limits Distributions

= Given some graph topology (XLY,XLZY 1 Z

(X1 Z|Y}

G, only certain joint
distributions can be encoded

The graph structure
guarantees certain
(conditional) independences

(There might be more
independence)

Adding arcs increases the set
of distributions, but has
several costs

Full conditioning can encode
any distribution

XULZ|YVX1LY|ZY 1 Z|X}

®
® @

o
B g -
P PP
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Bayes Nets Representation Summary

= Bayes nets compactly encode joint distributions

= Guaranteed independencies of distributions can be
deduced from BN graph structure

= D-separation gives precise conditional independence
guarantees from graph alone

= A Bayes net’ s joint distribution may have further
(conditional) independence that is not detectable until
you inspect its specific distribution
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