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CSE	473:	Artificial	Intelligence

Bayes’	Nets

Daniel	Weld
[Most	slides	were	created	by	Dan	Klein	and	Pieter	Abbeel	for	CS188	Intro	to	AI	at	UC	Berkeley.		All	CS188	materials	are	available	at	http://ai.berkeley.edu.]

Hidden	Markov	Models

Two	random	variable	at	each	time	step
§ Hidden	state,	Xi
§ Observation,	Ei

Conditional	Independences
Dynamics	don’t	change

§ E.g.,	P(X2 |	X1)	=	P(X18 |	X17)
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HMM	Computations

§ Given	
§ Parameters
§ Evidence E1:n =e1:n

§ Inference problems include:
§ Filtering, find P(Xt|e1:t) for all t

§ Exact Inference
§ Particle Filter

§ Smoothing, find P(Xt|e1:n) for all t
§ Most probable explanation, find 

x*1:n = argmaxx1:n P(x1:n|e1:n)

Exact	Inference:	Forward	Algorithm

E1

X1

X2X1

“Observation” “Passage of Time”
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Particle	Filtering:	Summary	
Particles:	track	samples	of	states	rather	than	an	explicit	distribution

Particles:
(3,3)
(2,3)
(3,3)			
(3,2)
(3,3)
(3,2)
(1,2)
(3,3)
(3,3)
(2,3)

Elapse Weight Resample

Particles:
(3,2)
(2,3)
(3,2)			
(3,1)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(2,2)

Particles:
(3,2)		w=.9
(2,3)		w=.2
(3,2)		w=.9
(3,1)		w=.4
(3,3)		w=.4
(3,2)		w=.9
(1,3)		w=.1
(2,3)		w=.2
(3,2)		w=.9
(2,2)		w=.4

(New)	Particles:
(3,2)
(2,2)
(3,2)			
(2,3)
(3,3)
(3,2)
(1,3)
(2,3)
(3,2)
(3,2)

Which	Algorithm?
Particle filter, uniform initial beliefs, 25 particles
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Which	Algorithm?
Particle filter, uniform initial beliefs, 300 particles

Which	Algorithm?
Exact filter, uniform initial beliefs
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Complexity	of	the	Forward	Algorithm?

If	only	need	P(x|e)	at	the	
end,	only	normalize	there

§ Complexity?

§ We	are	given	evidence	at	each	time	and	want	to	know

§ We	use	the	single	(time-passage+observation)	updates:

O(|X|2)	time	&	O(X)	space

But	|X|	is	exponential in	the	number	of	state	variables	L

Why	Does	|X|	Grow?

§ 1	Ghost:	k	(eg 9)	possible	positions	in	maze
§ 2	Ghosts:	k2 combinations

§ N	Ghosts:	kN combinations

11
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HMM Conditional	Independence

§ HMMs	have	two	important	independence	properties:
§ Markov	hidden	process,	future	depends	on	past	via	the	present

X2

E1

X1 X3 X4

E1 E3 E4

? ?

HMM Conditional	Independence

§ HMMs	have	two	important	independence	properties:
§ Markov	hidden	process,	future	depends	on	past	via	the	present
§ Current	observation	independent	of	all	else	given	current	state

X2

E1

X1 X3 X4

E1 E3 E4

?

?
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What	about	Conditional	Independence	in	Snapshot

§ Can	we	do	something	here?
§ Factor	X	into	product	of	(conditionally)	independent	random	vars?

§ Maybe	also	factor	E	

X3

E3

Yes!		with	Bayes	Nets

X3
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Bayes’Nets:	Big	Picture

Bayes’ Nets

§ Representation	&	Semantics

§ Conditional	Independences

§ Probabilistic	Inference

§ Learning	Bayes’ Nets	from	Data
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Bayes	Nets	=	a	Kind	of	Probabilistic	Graphical	Model

§ Models	describe	how	(a	portion	of)	the	world	works

§ Models	are	always	simplifications
§ May	not	account	for	every	variable
§ May	not	account	for	all	interactions	between	variables
§ “All	models	are	wrong;	but	some	are	useful.”

– George	E.	P.	Box

§ What	do	we	do	with	probabilistic	models?
§ We	(or	our	agents)	need	to	reason	about	unknown	

variables,	given	evidence
§ Example:	explanation	(diagnostic	reasoning)
§ Example:	prediction	(causal	reasoning)
§ Example:	value	of	information

Friction, 
Air friction, 
Mass of pulley, 
Inelastic string, …

Bayes’ Nets:	Big	Picture

§ Two	problems	with	using	full	joint	distribution	tables	
as	our	probabilistic	models:
§ Unless	there	are	only	a	few	variables,	the	joint	is	WAY	too	

big	to	represent	explicitly
§ Hard	to	learn	(estimate)	anything	empirically	about	more	

than	a	few	variables	at	a	time

§ Bayes’ nets:	a	technique	for	describing	complex	joint	
distributions	(models)	using	simple,	local	
distributions	(conditional	probabilities)
§ More	properly	… aka	probabilistic	graphical	model
§ We	describe	how	variables	locally	interact
§ Local	interactions	chain	together	to	give	global,	indirect	

interactions
§ For	about	10	min,	we’ll be	vague	about	how	these	

interactions	are	specified
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Bayes’ Net	Semantics

Bayes’ Net	Semantics

§ A	set	of	nodes,	one	per	variable	X

§ A	directed,	acyclic graph

§ A	conditional	distribution	for	each	node

§ A	collection	of	distributions	over	X,	one	for	each	
combination	of	parents’ values

§ CPT:	conditional	probability	table

§ Description	of	a	noisy	“causal” process

A1

X

An

A	Bayes	net	=	Topology	(graph)	+	Local	Conditional	Probabilities

P(A1 )  ….     P(An )
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Example:	Alarm	Network

Burglary Earthqk

Alarm

John	
calls

Mary	
calls

B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

Joint	Probabilities	from	BNs

§ Why	are	we	guaranteed	that	setting

results	in	a	proper	joint	distribution?		

§ Chain	rule	(valid	for	all	distributions):	

§ Assume conditional	independences:	

à Consequence:

§ Every	BN	represents	a	joint	distribution,	but
§ Not	every	distribution	can	be	represented	by	a	specific	BN

§ The	topology	enforces	certain	conditional	independencies
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Only	distributions	whose	variables	are	absolutely	independent	can	be	
represented	by	a	Bayes’ net	with	no	arcs.

Example:	Coin	Flips

h 0.5

t 0.5

h 0.5

t 0.5

h 0.5

t 0.5

X1 X2 Xn

Example:	Traffic

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

¼  * ¼  = 1/16 
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Example:	Alarm	Network
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ

Example:	Alarm	Network
B P(B)

+b 0.001

-b 0.999

E P(E)

+e 0.002

-e 0.998

B E A P(A|B,E)

+b +e +a 0.95
+b +e -a 0.05
+b -e +a 0.94
+b -e -a 0.06
-b +e +a 0.29
-b +e -a 0.71
-b -e +a 0.001
-b -e -a 0.999

A J P(J|A)

+a +j 0.9
+a -j 0.1
-a +j 0.05
-a -j 0.95

A M P(M|A)

+a +m 0.7
+a -m 0.3
-a +m 0.01
-a -m 0.99

B E

A

MJ
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Example:	Hidden	Markov	Models X5X2

E1

X1 X3 X4

E2 E3 E4 E5

XN

EN

P(R0) = 0.4   R1

U0

R0 R2

U1 U2

…

What	Causes	Bad	Traffic?

§ Causal	direction

R

T

+r 1/4

-r 3/4

+r +t 3/4

-t 1/4

-r +t 1/2

-t 1/2

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16
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Example:	Reverse	Traffic

§ Reverse	causality?

T

R

+t 9/16

-t 7/16

+t +r 1/3

-r 2/3

-t +r 1/7

-r 6/7

+r +t 3/16

+r -t 1/16

-r +t 6/16

-r -t 6/16

Causality?

§ When	Bayes’ nets	reflect	the	true	causal	patterns:
§ Often	simpler	(nodes	have	fewer	parents)
§ Often	easier	to	think	about
§ Often	easier	to	elicit	from	experts

§ BNs	need	not	actually	be	causal
§ Sometimes	no	causal	net	exists	over	the	domain	

(especially	if	variables	are	missing)
§ E.g.	consider	the	variables	Traffic and	Drips
§ End	up	with	arrows	that	reflect	correlation,	not	causation

§ What	do	the	arrows	really	mean?
§ Topology	may	happen	to	encode	causal	structure
§ Topology	really	encodes	conditional	independence
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Summary:	Bayes’ Net	Semantics

§ A	directed,	acyclic	graph,	one	node	per	random	variable
§ A	conditional	probability	table	(CPT)	for	each	node

§ A	collection	of	distributions	over	X,	one	for	each	combination	
of	parents’ values

§ Bayes’ nets	compactly encode	joint	distributions
§ As	a	product	of	local	conditional	distributions

§ To	see	what	probability	a	BN	gives	to	a	full	assignment,	
multiply	all	the	relevant	conditionals	together:

Size	of	a	Bayes’ Net

§ How	big	is	a	joint	distribution	over	N	
Boolean	variables?

2N

§ How	big	is	an	N-node	net	if	nodes	
have	up	to	k	parents?

O(N	*	2k)

§ Both	give	you	the	power	to	calculate

§ BNs:	Huge	space	savings!

§ Also	easier	to	elicit	local	CPTs

§ Also	faster	to	answer	queries	(coming)
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What’s	Next	with	Bayes’	Nets

Questions	we	can	ask:

§ Definition:		P(X	=	x)

§ Inference:	given	a	fixed	BN,	what	is	P(X	|	e)?

§ Representation:	given	a	BN	graph,	what	kinds	of	distributions	can	it	encode?

§ Modeling:	what	BN	is	most	appropriate	for	a	given	domain?

§ Learning:	Given	data,	what	is	best	BN	encoding?

Bayes’ Nets

§ Representation
§ Special	case:	HMMs	&	DBNs

§ Conditional	Independences

§ Probabilistic	Inference

§ Learning	Bayes’ Nets	from	Data
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Dynamic	Bayes Nets

Dynamic	Bayes	Nets	(DBNs)
§ We	want	to	track	multiple	variables	over	time,	using	

multiple	sources	of	evidence

§ Idea:	Repeat	a	fixed	Bayes	net	structure	at	each	time

§ Variables	from	time	t can	condition	on	those	from	t-1

§ Dynamic	Bayes	nets	are	a	generalization	of	HMMs

G1
a

E1
a E1

b

G1
b

G2
a

E2
a E2

b

G2
b

t	=	1 t	=	2

G3
a

E3
a E3

b

G3
b

t	=	3
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DBN	Particle	Filters

§ A	particle	is	a	complete	sample	for	a	time	step

§ Initialize:	Generate	prior	samples	for	the	t=1	Bayes	net
§ Example	particle:	G1

a	=	(3,3)	G1
b	=	(5,3)	

§ Elapse	time:	Sample	a	successor	for	each	particle	
§ Example	successor:	G2

a	=	(2,3)	G2
b	=	(6,3)

§ Observe:	Weight	each	entire sample	by	the	likelihood	of	the	evidence	conditioned	on	
the	sample
§ Likelihood:	P(E1a	|G1

a	)	*	P(E1b	|G1
b	)	

§ Resample:	Select	prior	samples	(tuples	of	values)	in	proportion	to	their	likelihood

Conditional	Independence	in	a	BN
§ Important	question	about	a	BN:

§ Are	two	nodes	independent	given	certain	evidence?
§ If	yes,	can	prove	using	algebra	(tedious	in	general)
§ If	no,	can	prove	with	a	counter	example
§ Example:

§ Question	1:	are	X	and	Z	necessarily independent?
§ Answer:	no.		Example:	low	pressure	causes	rain,	which	causes	traffic.
§ X	can	influence	Z,	Z	can	influence	X	(via	Y)

X Y Z


