CSE 473: Artificial Intelligence

Hidden Markov Models

Two random variable at each time step

- Hidden state, X_{i}
- Observation, E_{i}

Conditional Independences

Dynamics don't change

- E.g., $P\left(X_{2} \mid X_{1}\right)=P\left(X_{18} \mid X_{17}\right)$

HMM Computations

- Given
- Parameters
- Evidence $E_{1: n}=e_{1: n}$
- Inference problems include:
- Filtering, find $P\left(X_{t} \mid e_{1: t}\right)$ for all t
- Exact Inference
- Particle Filter
- Smoothing, find $P\left(X_{t} \mid e_{1: n}\right)$ for all t
- Most probable explanation, find

$$
x_{1: n}=\operatorname{argmax}_{x_{1: n}} P\left(x_{1: n} \mid e_{1: n}\right)
$$

Exact Inference: Forward Algorithm

"Observation"

$$
\begin{gathered}
P\left(X_{1} \mid e_{1}\right) \\
P\left(x_{1} \mid e_{1}\right)=P\left(x_{1}, e_{1}\right) / P\left(e_{1}\right) \\
\propto_{X_{1}} P\left(x_{1}, e_{1}\right) \\
\\
=P\left(x_{1}\right) P\left(e_{1} \mid x_{1}\right)
\end{gathered}
$$

Particle Filtering: Summary

Particles: track samples of states rather than an explicit distribution
Elapse Weight Resample

Which Algorithm?

Particle filter, uniform initial beliefs, 25 particles

Which Algorithm?

Particle filter, uniform initial beliefs, 300 particles

Which Algorithm?

Exact filter, uniform initial beliefs

Complexity of the Forward Algorithm?

- We are given evidence at each time and want to know

$$
B_{t}(X)=P\left(X_{t} \mid e_{1: t}\right)
$$

If only need $P(x \mid e)$ at the end, only normalize there

- We use the single (time-passagerobservation) updates:

$$
P\left(x_{t} \mid e_{1: t}\right) \propto_{X} P\left(e_{t} \mid x_{t}\right) \sum_{x_{t-1}} P\left(x_{t} \mid x_{t-1}\right) P\left(x_{t-1}, e_{1: t-1}\right)
$$

- Complexity? $O\left(|X|^{2}\right)$ time $\& O(X)$ space

But $|X|$ is exponential in the number of state variables $:<$

Why Does $|X|$ Grow?

- 1 Ghost: k (eg 9) possible positions in maze
- 2 Ghosts: k^{2} combinations

- N Ghosts: k^{N} combinations

HMM Conditional Independence

- HMMs have two important independence properties:
- Markov hidden process, future depends on past via the present

HMM Conditional Independence

- HMMs have two important independence properties:
- Markov hidden process, future depends on past via the present
- Current observation independent of all else given current state

What about Conditional Independence in Snapshot

- Can we do something here?
- Factor X into product of (conditionally) independent random vars?

- Maybe also factor E

Yes! with Bayes Nets

Bayes'Nets: Big Picture

Bayes' Nets

- Representation \& Semantics
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Bayes Nets = a Kind of Probabilistic Graphical Model

- Models describe how (a portion of) the world works
- Models are always simplifications
- May not account for every variable
- May not account for all interactions between variables
- "All models are wrong; but some are useful."
- George E. P. Box
- What do we do with probabilistic models?
- We (or our agents) need to reason about unknown variables, given evidence
- Example: explanation (diagnostic reasoning)
- Example: prediction (causal reasoning)
- Example: value of information

Friction, Air friction, Mass of pulley, Inelastic string, ...

Bayes' Nets: Big Picture

- Two problems with using full joint distribution tables as our probabilistic models:
- Unless there are only a few variables, the joint is WAY too big to represent explicitly
- Hard to learn (estimate) anything empirically about more than a few variables at a time
- Bayes' nets: a technique for describing complex joint distributions (models) using simple, local distributions (conditional probabilities)
- More properly ... aka probabilistic graphical model
- We describe how variables locally interact
- Local interactions chain together to give global, indirect interactions
- For about 10 min , we'll be vague about how these interactions are specified

Bayes' Net Semantics

Bayes' Net Semantics

- A set of nodes, one per variable X
- A directed, acyclic graph
- A conditional distribution for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- CPT: conditional probability table
- Description of a noisy "causal" process

A Bayes net $=$ Topology (graph $)+$ Local Conditional Probabilities

Example: Alarm Network

B	E	A	$\mathrm{P}(\mathrm{A} \mid \mathrm{B}, \mathrm{E})$
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

Joint Probabilities from BNs

- Why are we guaranteed that setting results in a proper joint distribution?

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

- Chain rule (valid for all distributions): $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid x_{1} \ldots x_{i-1}\right)$
- Assume conditional independences: $\quad P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)$
\rightarrow Consequence: $\quad P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid\right.$ parents $\left.\left(X_{i}\right)\right)$
- Every BN represents a joint distribution, but
- Not every distribution can be represented by a specific BN
- The topology enforces certain conditional independencies

Example: Coin Flips

$P(h, h, t, h)=$
Only distributions whose variables are absolutely independent can be represented by a Bayes' net with no arcs.

Example: Traffic

$$
P(+r,-t)=\quad 1 / 4 * 1 / 4=1 / 16
$$

Example: Alarm Network

Example: Alarm Network

Example: Hidden Markov Models

What Causes Bad Traffic?

- Causal direction

Example: Reverse Traffic

- Reverse causality?

$$
P(T, R)
$$

$+r$	$+t$	$3 / 16$
$+r$	$-t$	$1 / 16$
$-r$	$+t$	$6 / 16$
$-r$	$-t$	$6 / 16$

Causality?

- When Bayes' nets reflect the true causal patterns:
- Often simpler (nodes have fewer parents)
- Often easier to think about
- Often easier to elicit from experts
- BNs need not actually be causal
- Sometimes no causal net exists over the domain
 (especially if variables are missing)
- E.g. consider the variables Traffic and Drips
- End up with arrows that reflect correlation, not causation
- What do the arrows really mean?
- Topology may happen to encode causal structure
- Topology really encodes conditional independence

$$
P\left(x_{i} \mid x_{1}, \ldots x_{i-1}\right)=P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Summary: Bayes’ Net Semantics

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
- A collection of distributions over X, one for each combination of parents' values

$$
P\left(X \mid a_{1} \ldots a_{n}\right)
$$

- Bayes' nets compactly encode joint distributions

- As a product of local conditional distributions
- To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$
P\left(x_{1}, x_{2}, \ldots x_{n}\right)=\prod_{i=1}^{n} P\left(x_{i} \mid \operatorname{parents}\left(X_{i}\right)\right)
$$

Size of a Bayes' Net

- How big is a joint distribution over N Boolean variables?

2^{N}

- How big is an N-node net if nodes have up to k parents?

$$
\mathrm{O}\left(\mathrm{~N} * 2^{\mathrm{k}}\right)
$$

- Both give you the power to calculate

$$
P\left(X_{1}, X_{2}, \ldots X_{n}\right)
$$

- BNs: Huge space savings!
- Also easier to elicit local CPTs
- Also faster to answer queries (coming)

What's Next with Bayes' Nets

Questions we can ask:

- Definition: $P(X=x)$

- Inference: given a fixed $B N$, what is $P(X \mid e)$?
- Representation: given a BN graph, what kinds of distributions can it encode?
- Modeling: what BN is most appropriate for a given domain?
- Learning: Given data, what is best BN encoding?

Bayes' Nets

Representation

- Special case: HMMs \& DBNs
- Conditional Independences
- Probabilistic Inference
- Learning Bayes' Nets from Data

Dynamic Bayes Nets

Dynamic Bayes Nets (DBNs)

- We want to track multiple variables over time, using multiple sources of evidence
- Idea: Repeat a fixed Bayes net structure at each time
- Variables from time t can condition on those from $t-1$

- Dynamic Bayes nets are a generalization of HMMs

DBN Particle Filters

- A particle is a complete sample for a time step
- Initialize: Generate prior samples for the $\mathrm{t}=1$ Bayes net
- Example particle: $\mathbf{G}_{1}{ }^{\mathbf{a}}=(3,3) \mathbf{G}_{1}{ }^{\mathbf{b}}=(5,3)$
- Elapse time: Sample a successor for each particle
- Example successor: $\mathbf{G}_{\mathbf{2}}{ }^{\mathbf{a}}=(2,3) \mathbf{G}_{\mathbf{2}}{ }^{\mathbf{b}}=(6,3)$
- Observe: Weight each entire sample by the likelihood of the evidence conditioned on the sample
- Likelihood: $\mathrm{P}\left(\mathrm{E}_{1}{ }^{\mathrm{a}} \mid \mathrm{G}_{1}{ }^{\mathrm{a}}\right)^{*} \mathrm{P}\left(\mathrm{E}_{1}{ }^{\mathrm{b}} \mid \mathrm{G}_{1}{ }^{\mathrm{b}}\right)$
- Resample: Select prior samples (tuples of values) in proportion to their likelihood

Conditional Independence in a BN

- Important question about a BN:
- Are two nodes independent given certain evidence?
- If yes, can prove using algebra (tedious in general)
- If no, can prove with a counter example
- Example:

- Question 1: are X and Z necessarily independent?
- Answer: no. Example: low pressure causes rain, which causes traffic.
- X can influence Z, Z can influence X (via Y)

